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Abstract

By observing microarchitectural state, attackers can observe the control flow of
a program and derive information about secret values. Such leakage can be miti-
gated against by linearizing secret-dependent control flow. State-of-the-art compiler-
assisted control flow linearization methods commonly make use of conditional exe-
cution, relying on selection primitives found within an existing instruction set ar-
chitecture (ISA) that were not designed with control flow linearization in mind.

Related work of Winderix et al. proposes a novel hardware mechanism and
ISA extension for RISC-V called architectural mimicry (AMi) that provides prim-
itives designed to accelerate side-channel resistant programs by enabling efficient
control flow linearization and balancing. This thesis expands upon their proposed
programming model to enable linearization of reducible control flow without the
need for costly structurization and provides systematic methods to linearize secret-
dependent branches. We address the challenges involved in ensuring the correctness
and security of the linearized program.

We formally show that these methods preserve the semantics of the program, and
provide a practical implementation in the LLVM compiler. Experimental evaluation
of this implementation demonstrates that our automatic linearization adds only
6% overhead to both code size and execution time when compared to the manual
linearization efforts of Winderix et al. (AMi), still significantly lower than state-of-
the-art control flow linearization that makes use of conditional execution.
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Samenvatting

Door het observeren van microarchitecturale toestand kunnen aanvallers de contro-
lestroom van een programma waarnemen en informatie afleiden over geheime waar-
den. Deze lekkage kan worden verminderd door controlestroom die afhankelijk is
van geheime waarden te lineariseren. State-of-the-art compiler-ondersteunde metho-
den voor controlestroomlinearisatie maken vaak gebruik van conditionele uitvoering,
waarbij ze vertrouwen op selectieprimitieven die te vinden zijn in bestaande instruc-
tiesetarchitecturen (ISA’s) die niet zijn ontworpen met controlestroomlinearisatie in
gedachten.

Het verwante werk van Winderix et al. stelt een nieuw hardwaremechanisme
en ISA-uitbreiding voor RISC-V genaamd architectural mimicry (AMi) voor die
primitieven biedt ontworpen om side-channel resistente programma’s te versnellen
door efficiënte controlestroomlinearisatie en -balancering mogelijk te maken. Deze
masterproef breidt hun voorgestelde programmeermodel uit om linearisatie van re-
duceerbare controlestroom mogelijk te maken zonder de noodzaak van kostbare struc-
turering en biedt systematische methoden om controlestroom te lineariseren die af-
hankelijk is van geheime waarden. We gaan in op de uitdagingen bij het waarborgen
van de correctheid en beveiliging van het gelineariseerde programma.

We tonen formeel aan dat deze methoden de semantiek van het programma be-
houden en bieden een praktische implementatie in de LLVM -compiler. Experimen-
tele evaluatie van deze implementatie toont aan dat onze automatische linearisatie
slechts 6% overhead toevoegt aan zowel codegrootte als uitvoeringstijd in vergelij-
king met de handmatige linearisatie-inspanningen van Winderix et al. (AMi), nog
steeds aanzienlijk lager dan state-of-the-art controlestroomlinearisatie die gebruik-
maakt van conditionele uitvoering.
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Chapter 1

Introduction

Throughout the last decade, timing and microarchitectural attacks have exploited
the physical side effects of processors. This includes differences in execution time,
but also microarchitectural state such as caches. This is especially devastating in
shared environments in which an attacker can closely monitor microarchitectural
state [18]. One example of such shared systems are Infrastructure-as-a-Service (IaaS)
cloud computing platforms where multiple tenants are supported using virtual ma-
chines (VM).

Although virtualization provides isolation of the architectural state, secret data
can still leak on side channels, such as cache state, for which hardware is shared
between an attacker and his victim. Practical attacks on micro-architectural state
have been demonstrated by numerous research [31, 38, 49], which can lead to re-
covery of full cryptographic keys [10, 26]. A common countermeasure against such
attacks is constant-time programming, in which the programmer ensures that the
leakage trace does not depend on secrets.

1.1 Context
Constant-Time Programming Under constant-time programming model, code
is written such that control flow and memory accesses do not depend on secrets.
Memory accesses should not depend on secrets, since this would leak secrets through,
for example, cache-timing based side channels. This programming model is the de
facto standard to protect against microarchitectural attacks and commonly applied
in cryptographic libraries [6, 9].

Control flow linearization techniques are applied to eliminate secret-dependent
branches, replacing them with equivalent constant-time code. For example, by ex-
ecuting all paths of a secret-dependent branch in sequence, but only retaining the
results of one path. Currently, constant-time programming in cryptographic code is
generally a manual effort, and mainstream compilers provide no support or guaran-
tees for this programming model.
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1.2. Problem and Challenges

Compiler-Assisted Control Flow Linearization Numerous research explores
automatic control-flow linearization, in which programs are transformed into their
constant-time equivalent by eliminating secret-dependent branches [33, 12, 48, 15,
43]. In linearized code, all instructions are executed regardless of secret branch
conditions, and those conditions are instead used to select results in constant-time.
However, this results into significant binary size and runtime overhead, as it relies
on conditional execution [46].

Architectural Mimicry To accelerate programs hardened against side-channel
leakage, Winderix et al. [46] introduce a novel hardware mechanism called mimic
execution and instruction set architecture (ISA) support for RISC-V called architec-
tural mimicry (AMi), which aims to replace these conditional execution primitives
while still providing the means the balance or linearize code. Mimic execution is an
execution mode in which instructions are executed only for their microarchitectural
effects, while suppressing most architectural effects. When combined with the abil-
ity to conditionally enable mimicry mode for the duration of a branch, control flow
can be linearized with very low overhead. Unfortunately, there is no full compiler
support to automatically balance or linearize programs making use of AMi. Hence,
hardening programs with AMi is a manual effort.

Secure Compilation Compilation of sensitive code, such as code found in crypto-
graphic libraries, poses several challenges. When writing such code, cryptographers
rely on implicit invariants or assumptions about compilers, such as timing or mem-
ory access patterns. However, such invariants cannot be formally expressed today in
compilers, making it hard control side effects in modern C compilers [42]. Compiler
optimizations can break such implicit invariants by introducing secret-dependent
control flow or memory access. For example, a conditional selection may be trans-
formed into a branch to improve performance, Simon et al. [42] have proposed
extensions to existing mainstream compilers to support primitives such as constant-
time selection to make such implicit invariants explicit in the LLVM compiler.

A promising solution to this problem is secure compilation, which is the compi-
lations of programs while preserving security properties, such as constant-timeness.
Methods for secure compilation or side channel countermeasures have been proposed
by Barthe et al. [9], and practical implementations exist, such as CompCert [28]
and Jasmin [5]. Although initial implementations such as [28] only provided for-
mal verification of correctness and safety properties, more recent research such as
[5] also proves constant-time security. However, this does not apply to mainstream
compilers such as GCC and LLVM.

1.2 Problem and Challenges
We adopt the same scope as AMi, and assume an adversary may be able to run
software on the same physical core as the victim. Furthermore, we assume the
adversary has access to the source code of the vulnerable program. The adversary
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1.3. Proposal

aims to gain information about a secret that is leaked on software-based timing side
channels. Other types of side channels, such as power based channels [29], or side
channels based on transient execution [14] are outside the scope of this thesis.

AMi [46] can be applied to linearize secret-dependent branches, but their work
does not include full compiler support, making it difficult to apply in practice, as
assembly code has to be hardened manually. An assembler and disassembler is im-
plemented in LLVM by the authors of [46], but there is no support for automatic
hardening. Furthermore, the programming model they propose for linearizing con-
trol flow can only be applied to a limited set of programs that adhere to a certain
structure. Although they provide definitions for correctness and security as a way
to guide developers when to use AMi instructions, they do not state any concrete
rules.

The goal of this thesis is to extend LLVM, a widely used compiler toolchain,
to support automatic control-flow linearization using AMi. This presents several
challenges. Firstly, a practical algorithm is needed to linearize control flow without
changing the semantics of the program. Secondly, we need a concrete implementa-
tion in the LLVM compiler. This poses several challenges, since secret-dependent
branches need to be identified in the compiler backend and control flow lineariza-
tion algorithms must be implemented in a compilation pipeline where other compiler
transformation may not preserve the desired properties. Secrets are annotated in
the source program, to avoid unnecessary linearization of all branches. Lastly, the
resulting program must be both correct and secure. However, this results in addi-
tional challenges as some AMi instructions may break the correctness of a program
by overwriting registers that should not be overwritten in mimicry mode.

1.3 Proposal
This thesis proposes both fundamental and practical compiler support for AMi.
We propose an implementation to propagate annotations from clang (a C compiler
frontend of LLVM) to the RISC-V backend, and implement static taint analysis in
this backend to identify secret-dependent branches. This thesis aims to relax the
hypotheses, as well as the well-behavedness proposition introduced by [46], with the
goal of enabling a more general programming models that support reducible control
flow.

Several practical algorithms for linearization are proposed. We first propose
to structurize the control-flow graph (CFG) to a triangle-structured CFG, such
that the linearization pattern of [46] can be applied. Additionally, we provide a
method that can be applied to structured control flow by making use of activating
jump instructions. Lastly, we generalize these methods to reducible control flow by
adapting the partial control-flow linearization (PCFL) algorithm proposed by Moll
and Hack [32] and applied for security by Soares et al. [43]

To ensure that the resulting program is secure, we ensure that branch conditions
and accessed memory addresses are computed persistently. Furthermore, we nullify
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1.4. Contributions

side effects of store operations using ghost loads as proposed by [46], and we constrain
register allocation to maintain the correctness of the program.

1.4 Contributions
The contributions of this thesis are summarized as follows.

• We generalize the programming model for linearization proposed by Winderix
et al. [46], and broaden its applicability, such that AMi can be used to linearize
reducible control flow without an additional cost from structurization.

• We address challenges when ensuring that the resulting program is correct
and secure, by using persistent computation of memory addresses, nullifica-
tion of persistent side effects and register allocation constraints to maintain
correctness.

• We propagate annotations to the RISC-V backend of LLVM where we imple-
ment static taint analysis to identify secret-dependent branches.

• We formalize and implement three linearization methods based on AMi and
other research [12, 48, 32, 43] in the RISC-V backend of LLVM.

• We formally show that these methods preserve the high-level semantics of
the program under mild conditions, such as the assumption that loop bounds
cannot be secret-dependent.

• We evaluate and compare the execution time and code size overhead of different
linearization methods. Results show that all three linearization methods yield
similar results for most control flow graphs. When comparing our results with
the manual efforts of Winderix et al. [46], we observe a small overhead of
6% for both code size and execution time, which still greatly outperforms
state-of-the-art automatic control flow linearization methods.

• We make our modifications to the LLVM compiler available under a permissive
license to foster new research1.

1https://github.com/Danacus/llvm-project-ami-cfl
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1.5. Outline

1.5 Outline
This section provides an outline of the structure of this thesis.

• Chapter 2 Background provides background information about microarchi-
tectural attacks, gives an overview of compiler-assisted hardening against side
channel leakage, and introduces relevant AMi and compilation concepts that
will be used throughout this thesis.

• Chapter 3 Related Work discusses related work about structurization and
linearization.

• Chapter 4 System and Leakage Model introduces the language AMiL,
a formal abstraction of an ISA, as the system model, along with the leakage
model.

• Chapter 5 Linearization with Architectural Mimicry explains different
methods to linearize control flow using AMi, along with the conditions under
which such linearization is correct and secure.

• Chapter 6 Implementation in LLVM elaborates on the implementation
of these linearization methods in the RISC-V compiler backend of LLVM, in
addition to an explanation of how information about the secrecy of data can
be provided to this backend.

• Chapter 7 Evaluation discusses the results of benchmarks by comparing
the execution time and code size overhead of different linearization methods.

• Chapter 8 Conclusion concludes this thesis by summarizing the contribu-
tions and elaborating on its limitations. Furthermore, we briefly discuss related
work and explore future directions.
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Chapter 2

Background

2.1 Microarchitectural Attacks
The last decade has seen an uprise of infrastructure-as-a-service (IaaS) cloud com-
puting, which supports running multiple virtual machines (VM) on the same physical
machines. Significant progress has been made to achieve strong software isolation
of VMs, which includes confidentiality, integrity and availability of VMs that share
the same hardware [18]. One such example is the se4L microkernel, which has for-
mal proofs of such isolation properties [25, 24]. However, such methods only achieve
complete architectural isolation, and they do not mitigate against side channels. Mi-
croarchitectural components are shared between different stakeholders that execute
code on the same hardware. This has led to new exploits that allow attackers to leak
confidential information through timing-based side and covert channels [18, 44].

One example of such side-channel is leakage through control flow. The out-
come of a conditional branch can be observed by an adversary by measuring for
instance the execution time of the branch, the instruction cache or the predictor
state. Another example is leakage through cache state, which is shared between
the victim and the adversary. Consider a memory access, such as a load operation
where the address is secret-dependent. If an attacker can measure which cache lines
were touched, information about the secret that was used to determine the mem-
ory location will leak to the adversary [18]. These are traditional, software-based
side channel attacks, in contrast to physical side channels, such as power-based side
channels. Leakage through control flow can be mitigated against using software
hardening, such as code balancing [47] and linearization [12, 48, 15, 33, 43].

More recently, different kinds of microarchitectural attacks have been discovered,
such as Spectre [26] and Meltdown [30], which exploit speculative execution, where
the processor executes instructions speculatively based on predictions about the
most likely path of execution. These attacks rely on the fact that while architectural
effects of speculative execution are discarded, microarchitectural effects, such as
the cache state, remain. Even when a correct and secure non-speculative program
does not leak secret information through architectural or microarchitectural state,
speculative execution may leak this information through microarchitectural state.

6



2.2. Secure Compilation and Automatic Hardening

For example, a misprediction of a branch that guards access to an array to prevent
out-of-bounds access may still cause access to out-of-bounds data during speculative
execution. While the architectural state remains unaffected, secret information may
leak through attacker-observable cache state [14]. Such attacks are outside the scope
of this thesis since they cannot be mitigated using software hardening.

2.1.1 Program Hardening

The constant-time programming model is a common method to mitigate software-
based side channel attacks. A program is constant-time if two executions whose
inputs only differ in secret information leak the same observations to an attacker
[6]. The program is assumed to not contain secret-dependent memory accesses or
variable-time instructions with secret operands.

Constant-time programming is often applied to cryptographic libraries, such as
OpenSSL, BearSSL, libsodium [10] and HACL* [50], to mitigate timing attacks like
Lucky 13 [4]. To achieve this security goal, all secret-dependent branches must be
eliminated by linearizing the program. A linearized program always executes the
same sequence of instructions in the same order, such that the same control flow
trace is leaked regardless of the inputs.

Existing research has proposed several methods to linearize programs [12, 48,
15, 33, 43], which commonly rely on conditional execution primitives, such as a
conditional move, to ensure that the linearized program outputs the same results
as the original program, without using secret-dependent branches. This is known
as control-flow linearization, which linearizes control flow to meet the PC-Security
requirement as defined by Molnar et al. [33]. PC-Security implies that for each set
of secret inputs, the sequence of program counter values observed by an attacker
must be identical.

Borrello et al. [12] also implement a different kind of linearization called data
flow linearization, in which memory accesses are linearized by accessing all locations
the original program could reference. Other research implements similar methods to
mitigate such side channels [48, 36], but data flow linearization is outside the scope
of this thesis. A related method to harden against side-channel leakage is balancing
[2]. However, code balancing does not adhere to the constant-time policy [47].

Software hardening can be effectively automated through various techniques such
as automatic code balancing and linearization, which have been proposed in recent
research papers such as [47, 12, 48, 43]. These techniques are commonly implemented
through compilation passes and will be further explained in the next section.

2.2 Secure Compilation and Automatic Hardening

2.2.1 Compilation

A compiler is a program that translates code written in one language, called the
source language, to another language, called the target language. Commonly, the
source language is a high-level programming language used by a programmer, which

7



2.2. Secure Compilation and Automatic Hardening

is independent of the target machine that executes code. Examples of source lan-
guages include C, C++ and Rust. The target language is a low-level programming
language that can be used to create an executable program for a specific target
machine. Many modern compilers, such as GCC and LLVM make use of an Inter-
mediate representation (IR), on which several analysis and transformation passes
run to optimize code and to lower target-independent abstractions to target-specific
code.

A frequently used pattern in compiler design is to assign different passes to one
of three stages: the frontend, the middle end, and the backend. On the one hand,
the frontend verifies programs written in the source language, parses the program
into a syntax tree, and emits appropriate code in the intermediate representation.
On the other hand, the middle end applies target-independent optimization passes
to the intermediate representation. Finally, the backend lowers the intermediate
representation into target-specific machine code that can be executed on the target
architecture.

This thesis focuses on the compiler backend, in which target-specific harden-
ing passes are implemented for the RISC-V instruction set architecture (ISA). The
goal of these passes is to mitigate control-flow leakage through automatic program
linearization.

2.2.2 Taint Analysis

Program hardening to mitigate side channels usually comes with an additional cost
on the performance of the resulting code. For example, linearized code takes sig-
nificantly longer to execute when compared to its branched counterpart, since code
from all branches will always be executed. In practice, only leakage of confidential
information must be avoided. Information that is already public to the adversary
may be leaked on side-channels without compromising security.

As a result, it is desirable to minimize the impact on performance, by only
mitigating leakage of secret information. However, it is not always obvious which
information can be used by an attacker to derive information about a secret. To
mitigate leakage through control flow, secret-dependent branches must be linearized.
Even if a branch condition has not been marked as secret explicitly, its value may
be influenced by a secret. Hence, leakage of the branch condition may also leak
information about a secret.

Taint analysis can be used to track the flow of information throughout a program
to determine all variables that depend on secret information. Some research uses
dynamic taint analysis, where instrumented machine code or intermediate represen-
tation is profiled to determine secret-dependent variables [12]. Other research makes
use of static analysis to determine the flow of secret information, by propagating
taint by following data and control dependencies [48]. In both cases, taint flows
from an initial set of manually annotated secrets.

8



2.3. Control Flow Graphs

2.2.3 Contract-Aware Secure Compilation

Controlling side-channel leakage in the constant-time programming remains chal-
lenging in practice, due to compilers failing to understand the intentions of the
programmer and optimizing away linearized code, opening new side channels as a
result [42]. For example, a smart compiler may replace uses of conditional selec-
tion with branches to improve performance, such as the X86CmovConversion pass
in the x86 backend of LLVM. Simon et al. [42] propose an implementation of a
constant-time selection primitive in LLVM to improve constant-timeness guaran-
tees. Furthermore, they propose that compilers should explicitly support controls
for implicit properties such as execution time.

Guarnieri and Patrignani [19] say that programmers should be able to rely on
compilers to produce secure code, which would enable decoupling between program-
level security (leakage under ISA semantics), and microarchitectural security. The
former is the job of the programmer, while the latter should be enforced by the
compiler. They propose the idea of Contract-Aware Secure COmpilation (CASCO)
to achieve this. Such a compiler would respect a hardware/software security contract.
A security contract is an abstraction of the processor’s security guarantees that can
be leveraged by compilers to preserve security properties.

2.3 Control Flow Graphs
One important concept used during compilation is control flow, which describes
the order in which instructions can be executed. Depending on the semantics of
the instruction at a certain location, execution may continue at different locations.
Control flow describes how the program counter can change during the evaluation
of an instruction in a certain configuration. This section introduces the concepts
necessary to describe control flow.

2.3.1 Successor Relation and Basic Blocks

We assume a total order on the locations in the set Loc, such that Loc consists of
locations l0, l1, . . . , ln for which l0 ≤ l1 ≤ · · · ≤ ln. This order is inherited from
the set of natural numbers, since Loc ⊆ N. The successor relation → is a relation
over the set Loc, where lx → ly if and only if execution may continue from lx to ly.
Furthermore, lx is called a predecessor of ly.

For instructions add, mul, load, store, and activating branches at location l, l is
succeeded only by l +1 (l→ l +1, and there is no other l′ such that l→ l′). Branch,
jump, and call instructions have different successors. A jmp or call instruction
at location l can only be succeeded by its target location l′. Similarly, branch
instructions (beqz and bnez) at l can be succeeded by their target location l′.
Additionally, they can be succeeded by l + 1, in case the branch condition evaluates
to false. There is a path from location lx to ly if there is a sequence of locations such
that lx → . . .→ ly.
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2.3. Control Flow Graphs

l0 : add x, 3, 5
l1 : load y, x

l2 : add y, 0, 7
l3 : jmp lx

Figure 2.1: Basic block with instructions and a single terminator at l3

In order to simplify reasoning about control flow, instructions can be grouped
into basic blocks. A basic block is a pair (I, T ) where I, T ⊆ Loc such that I
and T consist of subsequent locations. Suppose that I consists of i0, i1, . . . , in and T
consists of t0, t1, . . . , tm, then i1 = i0 +1, i2 = i1 +1, . . . in = in−1 +1, t0 = in +1, t1 =
t0 + 1, . . . , tm = tm−1 + 1. Furthermore, i0, . . . in each only have a single successor,
and i1, . . . , in, t0, . . . tm only have a single predecessor. Only call instructions are
allowed to have a successor that does not belong to the same basic block under
the assumption that they return to the location that follows directly after the call
instruction.

Therefore, a basic block contains a linear sequence of instructions I that ends
with a sequence of terminators T that may have multiple successors. Such termina-
tors are usually branch or jump instructions where their target location is always the
entry location of another basic block. Under these assumptions, a successor relation
can also be defined on the set of basic blocks as follows: bx → by if and only if there
is some terminator in bx that is succeeded by the entry of by.

2.3.2 Control Flow Graph

The collection of basic blocks with instructions and their successor relation can be
represented using a control-flow graph (CFG). We assume that a CFG has a unique
entry and a unique exit. In this thesis, a graphical representation is used to describe
CFGs, which will be introduced in this section. A sequence of instructions forms a
basic block, which is illustrated in Figure 2.1.

The successor relation between basic blocks is represented using control-flow
edges in the CFG, as illustrated in Figure 2.2. The terminator branch at l0 has two
successors, hence its block has two successor blocks. Similarly, the jump instruction
at l2 has a single successor and as a result, its basic block has a single successor.
There are no branch or jump instructions in the block at location l3. In this case,
the last instruction of that block, namely the add instruction at l3 can be treated as
a terminator with a single successor, namely l4. As a result, this block has a single
successor block. This is called a fallthrough, since control flow falls through to the
next block without encountering a terminator.

A graphical representation of a CFG can also be used to describe abstract control
flow features without defining a concrete CFG. One example of this is given in
Figure 2.3, in which there is a path from l3 to lx. Such path may pass through
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l0 : beqz c, l3

l1 : s.add y, 0, 7
l2 : jmp l4

l3 : add y, 0, 3

l4 : ret

Figure 2.2: An example of a CFG with control-flow edges (solid line).

l0 : beqz c, lx

l1 : add x, 3, 5
l2 : load y, x

l3 : add y, 0, 7

lx : ret

Figure 2.3: Example description of control flow with a path from l3 to lx.

several other basic blocks, but the target must be reachable through a sequence of
control-flow edges.

2.3.3 Structured Control Flow

In this section we define both structured and triangle-structured control flow, based
on the formalization of Sabne et al. [40]. First, the dominance and post-dominance
relations are defined for both locations, edges and basic blocks. A location (edge,
block) l dominates l′ if each path from the CFG entry to l′ contains l. Conversely,
a location (edge, block) l post-dominates l′ if each path from l′ to the CFG exit
contains l. These control flow properties are illustrated in Figure 2.4.

Both the dominance and post-dominance relations can be captured by a (post-
)dominance tree in which the parent of a block in this tree (post-)dominates that
block. The parent of a block in the (post-)dominance tree is called the immediate
post-dominator. Furthermore, regions and single-entry single-exit (SESE) regions
are defined. A region [l, l′] is the set of all locations (blocks) and edges present on
any path from l to l′. Such region is a single-entry single-exit (SESE) region [l, l′]
if the following holds:

• l dominates l′

11
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l0 : beqz c, lx

l1 : add y, 0, 7

lx : ret

pdom

Figure 2.4: Example description of control flow with a post-dominance relation
between l1 to lx.

l0 : beqz c, lx

l1 : B

lx : ret

Figure 2.5: Example description of control flow with a region B = [l1, lx].

• l′ post-dominates l

• every cycle containing l also contains l′ and vice versa

A region is represented by a node with a dashed border, as shown in Figure 2.5.
Location l is the entry of region [l, l′], l′ is the exit, and any location within the
region that precedes the exit is called an exiting location. Similarly, a location that
precedes the entry is called an entering location.

The notion of structured control flow has been formalized by Sabne et al [40],
where the maximum in-degree and out-degree of each node is two. Any CFG with
nodes of a higher in- or out-degree can trivially be converted into a CFG with
maximum in- and out-degree of two. Hence, we assume that locations have at most
two successors and at most two predecessors.

We adopt their definition of a structured selection condition node by defining
a structured branch as a location for which each path from a successor of that
location to its immediate post-dominator, the region between the first and last
location of that edge is a SESE region. We refer to these regions as branch regions.
Furthermore, we introduce the notion of triangle-structured control flow as a subset
of structured control flow where a triangle-structured branch is a structured branch
with its immediate post-dominator as successor.
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0

1

23

4

5

(a) Example of structured control flow

0

1

2

3

(b) Example of non-structured control flow

Figure 2.6: Examples of structured and non-structured control flow

Example 1. In Figure 2.6a, block 1 is structured, since each path from 1 to
its immediate post-dominator 4 (1 → 2 → 4 and 1 → 3 → 4) spans an SESE
region between its first and last edge. Block 0 is triangle-structured, because it
is structured, and its immediate post-dominator 5 is also a successor of 0.

Example 2. In Figure 2.6b, block 0 is not structured, because for the path
0→ 2→ 3 to its immediate post-dominator 3, the region between the first and
last edge of this path is not SESE. Similarly, block 1 is not structured.

2.3.4 Reducible Control Flow

A more common requirement for control flow structure is reducibility [21]. A CFG
is reducible if the control-flow edges can be partitioned into forward edges and back
edges. The forward edges form a directed acyclic graph (DAG) in which all locations
are reachable from the entry, and for all back edges la → lb, lb dominates la.

Each back edge of a reducible CFG unambiguously defines a (natural) loop [20].
Such loop is single-entry, all paths to a location within the loop must pass through
the (loop) header (the header dominates all locations in the loop). Furthermore, we
assume that all back edges enter the header of their loop [3] and that all locations
in the loop are strongly-connected, meaning that each location must be reachable
from all other locations.

We also define the following terminology that is used in the LLVM [27] compiler
[1]. An entering block is a non-loop block that enters the header of a loop, and if
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0

1

32

4

5

6

7

Figure 2.7: Example of a reducible CFG. 0 is the entry of the CFG and 7 is the
exit. 6→ 5 is the only back edge, which defines a loop with blocks 5 and 6. 5 is the
header of this loop, and 6 is both a latch and an exiting block.

this is the only edge entering the header. A latch is a block that has a back edge to
the header, and an exiting edge leaves the loop from an exiting block to an exit.

Example 3. The CFG in Figure 2.6b is reducible, because the edges form a
DAG. Another example of a reducible CFG is given in Figure 2.7. It is reducible
because the target 5 of back edge 6 → 5 dominates 6, and all remaining edges
form a DAG.

2.4 Liveness Analysis
In order to allocate physical registers to virtual registers, liveness analysis is used
to determine whether a register holds a value that may be needed in the future.
Moreover, liveness analysis is used to determine data and control dependencies.
This section discusses how the liveness of a register can be determined.

2.4.1 Def-Use Relation

Each instruction may define and use some registers. For example, the add x, a, b
instruction uses a and b to compute a+ b, and defines x by assigning the result to x.
Such use-def relations can be defined using inference rules similar to [35], as shown
in Figure 2.8, along with the successor relation. Note that in these rules, we assume
that each expression is a register and not a value, since def and use are only defined
on registers. These relations induce a chain on defs and uses. For example, a and
b may be used by an add instruction to compute x = a + b, which defines x. Then
x may be used later in the program by another instruction that might define yet
another register.
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l : add x, y, z

def(l, x) use(l, y)
use(l, z) l→ l + 1

l : mul x, y, z

def(l, x) use(l, y)
use(l, z) l→ l + 1

l : call l′

l→ l′
l : jmp x

use(l, x)
l→ JxKr

l : beqz c, l′

use(l, c)
l→ l + 1

l→ l′

l : bnez c, l′

use(l, c)
l→ l + 1

l→ l′

l : load x, a

use(l, x)
use(l, a)
l→ l + 1

l : store x, a

use(l, x)
use(l, a)
l→ l + 1

Figure 2.8: Inference rules for def, use and the successor relation

l0 : beqz c, l3

l1 : add y1, 0, 7
l2 : jmp l4

l3 : add y2, 0, 3

l4 : phi y, y1, y2

l5 : ret

Figure 2.9: Example CFG in SSA

2.4.2 Static Single Assignment

Most compiler passes assume that the intermediate representation is in static single
assignment (SSA) form [39]. This form provides a compact def-use graph that
simplifies many dataflow optimizations while avoiding expensive dataflow analysis
[27]. In this form, each variable or register can only be defined once in the entire
program.

To enable more complex control flow in this form, “join” or ϕ-nodes (phi) can
be used to choose a variable based on which predecessor block was executed before.
For example, consider Figure 2.2. This program is not in SSA, since y is defined
both at l1 and at l3. Figure 2.9 shows how this program can be written in SSA-form,
by using a phi (ϕ) instruction, which chooses between y1 and y2 depending on the
block that was executed before, and assigns the result to y.

2.4.3 Liveness

Liveness analysis is required for register allocation, since two variables that are in
use cannot be assigned to the same physical register. A variable is live at a certain
location if it holds a value that may be needed in the future [8]. Pfenning and
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Platzer [35] define inference rules to derive liveness based on the defs and uses of
instructions, and the control flow of the program. These rules are given below.

use(l, x)
live(l, x)

live(l′, u) succ(l, l′) ¬def(l, u)
live(l, u)

These rules derive liveness by working backwards starting from the uses of vari-
ables. If a variable is used at a certain location, it must be live (rule 1). The variable
is also live at any predecessor, unless it is defined at that location, in which case
the backwards propagation of liveness stops (rule 2). Furthermore, we say that a
variable is a live-in of a basic block if the variable is live at the entry of the block,
and a variable is a live-out of a basic block if the variable is live at the entry of a
successor block.

2.4.4 Data and Control Dependencies

Data and control dependencies have been briefly discussed in Section 2.2.2 about
static taint analysis. In this section, we formalize those dependencies for AMiL
programs. We say that two instructions at l and l′ respectively are data dependent
if there is a register x defined at l and used at l′, and there is a path from l to l′ on
which x remains live. Two locations l and l′ are control dependent if there is a path
from l to l′ such that each location on the path after l is post-dominated by l′, but
l′ does not post-dominate l [16].

Example 4. An example of a data-dependency is the def-use relation in x
= a + b, where x is marked as secret if a or b is secret. An example of a
control-dependency is if (a == 0) { x = 2 } else { x = 5 } where x is
secret-dependent if a is secret.

Both control and data dependencies are transitive, hence if l3 is dependent on
l2 and l2 is dependent on l1, l3 is dependent on l1. In the case of taint analysis,
both types of dependencies are considered. We say that l′ is secret if there is some
secret l such that (l, l′) is part of the transitive closure over all data and control
dependencies.

2.5 Common Compiler Transformations

2.5.1 Transformation

Numerous compiler passes will apply transformations to the control flow graph. Such
transformations may add, remove or change instructions, which may also change the
successor relation in case branch instructions are modified. Register allocation is an
example of such transformation.
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A function takes a set of physical registers as inputs, and a set of physical
registers as outputs. Furthermore, changes may be committed to the memory. A
transformation should preserve program semantics. However, not all parts of the
architectural configuration are considered “live”. For example, a transformation may
introduce spills of a register on the stack, meaning that the transformed program
would write to memory locations that are left untouched by the original program.
This should still be considered correct, since these memory locations are no longer
in use at the end of the function.

Similarly, a transformation such as register allocation may cause the program to
use different registers. However, since these registers might no longer live at the end
of the function if they are not output registers, hence this transformation should
still be considered correct.

2.5.2 Register Allocation

A register allocation is a function alloc : Regsv → Regsp, it maps variables or virtual
registers to physical registers. We say that such allocation is valid if and only if for
each v1, v2 ∈ dom(alloc) where v1 6= v2, alloc(v1) = alloc(v2) implies that there is
no location l at which both v1 or v2 are live. Intuitively, this means that a valid
allocation will never assign two variables that are in use at the same time to the
same physical register.

To compute a valid allocation, an interference graph can be constructed based on
the liveness information [8]. An interference graph contains edges (v1, v2) if there is a
location at which both v1 and v2 are live. Hence, it describes which variables cannot
be assigned to the same physical register. Using this graph, finding a valid allocation
can be reduced to coloring of the interference graph such that no two neighboring
nodes are given the same color. Such graph coloring solution will always impose a
valid allocation.

Since the number of physical registers is limited, it is desirable to use as little
registers as possible in an allocation, to avoid having to spill registers on the stack.
Register pressure is the number of physical registers needed for a valid allocation,
and it can be used to describe the impact of a certain program on the number of
needed registers. One of the goals of this thesis is to reduce register pressure when
using AMi to linearize programs compared to state-of-the-art methods.

2.6 Architectural Mimicry
Architectural mimicry (AMi) is a novel approach that extends hardware to facili-
tate software-based hardening against side-channel attacks introduced by Winderix
et al [46]. They propose a new hardware mechanism, called mimic execution, an
execution mode in which instructions are executed only for their attacker observable
effects, while most architectural effects are suppressed. Additionally, they propose
programming models for code balancing and linearization, and implement AMi as a
RISC-V ISA extension.

17



2.6. Architectural Mimicry

2.6.1 Qualified Instructions

In AMi, instructions are paired with a qualifier, which defines the behavior of in-
structions in both the standard execution mode and mimicry mode. The mimic
qualifier m causes an instruction to always be mimicked. For example, the m.add
instruction is always mimicked, hence it has no architectural effects, but it leaks the
same observations to an adversary as a normal add instruction.

By default, most instructions are qualified as standard instructions, in which
case the architectural behavior of the instruction depends on the execution mode
of the processor at the time the instruction is being executed. In normal execution
mode, all architectural effects are persistent, but in mimicry mode, no changes are
committed to the architectural state. In both cases, the same information is observed
by an attacker.

2.6.2 Activating Branches

To support linearization with minimal overhead, AMi provides activating branches
a.br c, target, which conditionally activate mimicry mode until the target address
is reached instead of jumping to the target address. These activating branches
always fall through to the next instruction, but when mimicry mode is enabled,
all instructions encountered within the branch will be mimicked. As a result, the
activating branches behave the same way as a normal branch on an architectural
level, but leak the same observations regardless of the branch condition.

Example 5. This is illustrated in Figure 2.10. The example program is taken
from [46]. The beqz branches if the condition c is 0, but when paired with
an activating qualifier a, it will instead enable mimicry mode. When mimicry
mode is enabled in this example (i.e. when the branch condition evaluates to
0), the results of the two add instructions will not be made persistent, hence v
remains untouched. Consequently, the semantics of the program are the as in
the original program.

The region starting with the activating branch as entry and its target as exit is
referred to as the activating region of that branch. The security and correctness of
an activating region are formalized in [46], and they will be revisited in this thesis
in Section 5.5 and Section 5.4.2 respectively.

2.6.3 Persistent Instructions

Not all architectural effects should be suppressed. For example, architectural up-
dates that affect the non-secret-dependent control flow within an activating region,
or instructions that influence the address of memory accesses should not be sup-
pressed. It is necessary to make these effects persistent, otherwise the microarchi-
tectural observations in mimicry mode and standard execution mode would differ,
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i f ( c != 0) {
v = 2 ∗ a + 7 ;

}

C code

l1 : beqz c, l4

l2 : add v, a, a

l3 : add v, v, 7

l4 : ret

Vulnerable assembly code

l0 : a.beqz c, l3

l2 : add v, a, a

l3 : add v, v, 7

l4 : ret

Linearized assembly form

Figure 2.10: Branch linearization using AMi

which breaks security. For this reason, AMi provides persistent instructions (quali-
fier p) that are executed normally regardless of the execution mode.

2.6.4 Non-mimicable Instructions

Instructions such as system calls or store operations cannot be mimicked currently.
To allow store instructions within an activating region without breaking the cor-
rectness, ghost instructions can be used to nullify the store operation when executed
in mimicry mode. A ghost instruction is only executed in mimicry mode, and will
be mimicked in standard execution mode. Consider a store instruction that stores
x at address v (store x, v). By adding a ghost load g.load x, v right before the
store instruction, the value that was originally stored at location v will be loaded
in mimicry mode, nullifying the architectural effect of the store. Conversely, during
normal execution the ghost load will be mimicked, hence x will still contain the new
value, not the value that was originally stored at location v [46].
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Chapter 3

Related Work

This chapter contains a short survey of different structurization (Section 3.1) and
linearization (Section 3.2) techniques. We use the reducible CFG shown in Figure 3.1
as an example throughout this section.

3.1 Structurization
Several linearization methods [12, 48] require structured CFG. A method to trans-
form reducible control flow into structured control flow has been proposed by Anant-
pur et al. [7]. This method is inspired by the idea of predicated/guarded execution
of the basic blocks. For each basic block, a guard block is created which decides
whether a block should be executed.

Example 6. Applying this method to the example in Figure 3.1 results in the
CFG in Figure 3.2, a triangle-structured CFG. All blocks are placed in a linear

l0 : beqz c1, l4

l1 : add x, x, 5
l2 : beqz c2, l5

l3 : jmp l6

l4 : add x, x, 10

l5 : add x, x, 2

l6 : ret

0

1 2

3

4

Figure 3.1: A simple reducible, but unstructured control flow graph (left) and a
more abstract representation of this CFG (right)
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l0 : add t1, 0, 0
l1 : bnez c1, l4

l2 : add x, x, 10
l3 : add t1, 0, 1

l4 : bnez t1, l6

l5 : add x, x, 5

l6 : or t2, c2, t1

l7 : bnez t2, l9

l8 : add x, x, 2

l9 : ret

0

2G

2

1G

1

3G

3

4

Figure 3.2: A triangle-structured version of the CFG in Figure 3.1

sequence, and each block i is preceded by a guard block iG. We introduced
auxiliary predicates t1 and t2 to determine which blocks should be executed,
and which blocks should be skipped. Predicate t1 is set if and only if block 2 is
executed. Since paths that contain block 2 never pass through block 1, we branch
over block 1 if t1 is set. Similarly, we only execute block 3 if condition c2 is not
zero or t1 is set (i.e. block 2 was taken).

This approach is used to improve performance on Single Instruction Multiple
Threads (SIMT) architectures such as GPUs [7]. Branch conditions may evaluate to
different values in different threads, leading to divergence of threads that negatively
impacts performance. Structurization is applied to reduce the impact of divergence
by ensuring that divergent threads reconverge earlier. However, this approach struc-
turizes to a CFG where each branch is triangle-structured, which is suboptimal for
some applications, such as the mitigation of side-channel leakage using the methods
proposed by [12] and [48]. In more recent work by Reissmann et al. [37], a similar
method is applied to restructure branches, resulting in structured control flow that
is not necessarily triangle-structured.

Example 7. The application of this method on the example in figure 3.1 would
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l0 : beqz c1, l3

l1 : add x, x, 5
l2 : jmp l5

l3 : add x, x, 10
l4 : add t1, 0, 1

l5 : or t2, c2, t1

l6 : bnez t2, l8

l7 : add x, x, 2

l8 : ret

0

1 2

3G

3

4

Figure 3.3: A structured version of the CFG in figure 3.1

result in the CFG shown in figure 3.3.

Similar techniques are used in the implementation of Borrello et al. [12], in which
control flow is structurized before their linearization methods are applied.

3.2 Linearization
Linearization is the process of transforming a CFG into a linear sequence of in-
structions (i.e. without branches) that produces the same results. This is useful on
SIMT architectures, such as GPUs, where divergent branches may reduce perfor-
mance, and it is necessary for SIMD [32]. A branch is considered divergent if the
branch condition evaluates to different values on different parallel threads [7, 32].
While the structurization methods described in previous section aim to reconverge
divergent threads as soon as possible, more recent work eliminates these divergent
branches entirely by linearizing them [32].

3.2.1 Linearization of Structured Control Flow

Since linearization eliminates branches, it can also be used to mitigate against side-
channel leakage [12, 48, 43, 15, 33]. Molnar et al. [33] introduced the notion
of PC-Security. In this model, all control flow decisions are leaked to attackers.
They implemented a transformation on C source code where both branches of an
if-statement are executed, but only the results of one of those branches are retained.
Later research implemented similar methods in the compiler backend [15] or middle-
end [12, 48]. First the structurization methods introduced in previous section are
applied such that each secret-dependent branch is structured. Then the branch re-
gions are placed in a linear sequence, such that both regions are always executed. A
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l0 : beqz c, l2

l1 : add x, 0, 2 l2 : add x, 0, 5

l3 : ret x

l0 : seqz taken, c

l1 : add x1, 0, 2
l2 : add x2, 0, 5
l3 : ctsel x, x1, x2, taken

l4 : ret x

Figure 3.4: Program with branches (left) and linearized version (right)

constant-time selection primitive ctsel is used to copy either of the used registers to
the defined register depending on whether a predicate is true. This predicate is set
if and only if the branch in the original branch would have been taken. That way,
only the results of one of those branch regions are retained.

Example 8. This is illustrated in Figure 3.4. Instead of taking a branch if c
is zero, a taken predicate is set by the seqz (set if equal to zero) instruction.

Then, both l1 and l2 are placed in a linear sequence, followed by a constant-
time selection between x1 and x2, predicated by the taken predicate.

On architectures such as X86, this can constant-time conditional selection can
be implemented efficiently making use of the conditional move instruction. To im-
plement this primitive on other architectures that do not support such instructions,
the method of Molnar et al. [33] can also be applied. Different ways to instantiate
ctsel are also discussed by [12]. When applied to a program in SSA-form, control-
flow linearization can be straightforwardly implemented by replacing ϕ-nodes with
ctsel primitives.

3.2.2 Partial Control Flow Linearization (PCFL)

A different approach to linearize secret-dependent branches has been proposed by
Soares et al. [43]. Their work is based on the concept of partial control-flow lin-
earization (PCFL) introduced by Moll and Hack [32]. PCFL is a method for SIMD
that eliminates divergent branches, while keeping the uniform branches in place, in
contrast to previous methods, in which non-divergent, or uniform, branches are also
linearized. The only requirement for this method is reducible control flow. Soares
et al. [43] note that by replacing “uniform” with “public” and “divergent” with “se-
cret”, an algorithm can be obtained to mitigate against side-channel leakage. This
method relies on predication or masking inside the blocks, in contrast to the meth-
ods of [12] and [48] where conditional move instructions are used after executing
the linearized blocks. In this thesis, we generalize the linearization method of AMi
proposed by [46] to support reducible control flow by adapting PCFL.
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l0 : beqz c, ln

l1 : B

ln :

a) Before linearization

l0 : a.beqz c, ln

l1 : B

ln :

b) After linearization

Figure 3.5: Pattern to linearize conditional branches

3.2.3 Programming Model of Architectural Mimicry

Lastly, we introduce the programming model to linearize control flow using AMi as
introduced by Winderix et al. [46]. In this programming model, the linearization
pattern in Figure 3.5 is applied on secret-dependent branches. A concrete example
of the application of this pattern is shown in Figure 2.10. However, the applicability
of this pattern is limited to triangle-structured branches. For example, in figure
2.6a, this pattern can only be applied to block 0, where [1, 4] is the SESE region
B. Consequently, CFGs such as those shown in Figures 2.7 and 3.1 cannot be lin-
earized without first triangle-structurizing the secret-dependent branches, resulting
in significant running time and code size overhead. This limitation originates from
the hypotheses that are imposed on well-behaved activating regions. Consider the
following proposition for well-behaved activating regions as defined by Winderix et
al. [46].

Proposition 1 (Well-behaved activating region). For any activating region [l, l′]
and valid configuration σ such that [l, l′]σ ⇓o σ′, if AC is set after executing the
instruction at location l (either because it was already before, or because it was
incremented at location l):

1) it remains set during the execution of [l, l′] (including recursive function calls
but excluding l′), and

2) if AC is incremented at location l, it is restored to its initial value during the
evaluation of the instruction at location l′.

They express the two hypotheses under which this proposition holds. The first
hypothesis assumes that the program can be partitioned into a set of distinct func-
tions, and states that a function cannot jump to an arbitrary location in another
function. A function can only be entered through its entry label, and a function
call at address l always returns to l + 1. The second hypothesis states all activating
regions are SESE regions, whereas in their notion of a CFG, a control-flow edge
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l→ l′ is also included if l contains an activating instruction with target l′. This is in
contrast with the definition of the successor relation defined in section 2.3.1 of this
thesis, which does not include those edges. The programming model requires that
this well-behavedness property holds for each activating region. As a result, pattern
3.5 is the only applicable linearization pattern.

25



Chapter 4

System and Leakage Model

This chapter introduces the system model called AMiL, as defined by Winderix
et al [46] (Section 4.1) and its formal semantics, along with the leakage model
(Section 4.2). We extend AMi semantics to enable more efficient linearization based
on PCFL.

4.1 System Model
In this thesis, we assume that programs are compiled to a typical ISA with an
extension for AMi, as introduced by [46]. To support the formalization of AMi, the
authors of [46] introduce a simplified ISA called AMiL.

4.1.1 Syntax

We adopt the syntax of AMiL from [46], with minor additions. This syntax describes
the instructions that can be interpreted by a processor, and those instructions form a
program when placed in a sequence. We assume a set of program locations Loc ⊆ N.
Additionally, a set of registers Regs is assumed, which is further partitioned into a
finite set of physical registers Regsp and an infinite set of virtual registers Regsv.
Such registers are used to store values v ∈ V. Registers are mapped to values by
the register file r : Regs → V. Only physical registers are assumed to be present
on a physical machine, hence compilation should allocate a physical register to each
virtual register. Let Instr be a set of instructions, and P : Loc→ Instr a program
that maps locations to instructions. The syntax of instructions in AMiL is given by
Figure 4.1. An expression can be evaluated to a value given a certain register file r
with J·Kr.

As defined by Winderix et al. [46], qualified instructions can be divided into three
classes: mimicable, activating and always persistent. These classes define which
qualifiers can be added to instructions. Table 4.1 is adopted from [46], extended to
allow activating jumps and function return. We define new instructions q.instr for
each instruction instr and supported qualifier q for that instruction (as described
in Table 4.1), in addition to the instructions defined in Figure 4.1.
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4.1. System Model

〈Expr〉 ::= 〈Val〉 | 〈Reg〉

〈Instr〉 ::= add 〈Reg〉, 〈Expr〉, 〈Expr〉 | mul 〈Reg〉, 〈Expr〉, 〈Expr〉
| beqz 〈Expr〉, 〈Loc〉 | bnez 〈Expr〉, 〈Loc〉
| call 〈Loc〉 | ret | jmp 〈Expr〉
| load 〈Reg〉, 〈Expr〉 | store 〈Expr〉, 〈Expr〉

Figure 4.1: Syntax of base instructions in AMiL where 〈V al〉 ranges over V,〈Reg〉
ranges over Regs and 〈Loc〉 ranges over Loc.

Class Instructions Qualifiers
Mimicable add, mul, load s, m, g, p
Activating call, ret, jmp, beqz, bnez a, p
Always Persistent store p

Table 4.1: Classes of qualified instructions for AMiL (default qualifier in bold)

Lastly, we adopt the notion of an architectural configuration and an AMi con-
figuration from [46]. The former is a tuple 〈m, r, pc〉 where m : V → V is memory
and r : Regs → V a register file, which maps registers to values. The program
counter pc is a register that stores the location of the next instruction to execute.
An AMi configuration σ = 〈m, r, pc, AC, En, Ex〉 extends an architectural configu-
ration 〈m, r, pc〉 with three additional registers: an activation counter AC, which
counts the number of nested activations, a mimicry entry address En that stores
the location at which AC was set, and a mimicry exit address Ex, which stores the
location at which AC will be restored to its initial value.

4.1.2 Semantics

Base Semantics The base semantics of AMiL can be defined as a transition
system over architectural configurations a

o−−→
inst

a′. Here, o is an observation trace,
which defines what information leaks on microarchitectural side channels during the
evaluation, as will be further elaborated upon in Section 4.2. The formal semantics
of base AMiL are given by Figure 4.2.

AMi semantics In addition to the semantics of base AMiL, the authors of [46]
define the semantics of the full AMiL ISA (including qualified instructions) as a rela-
tion σ

o=⇒ σ′ over AMi configurations, which define when instructions are mimicked
or executed, and how the activation counter is updated. We adopt these semantics
from [46], with the addition of evaluation rules for a.bnez and activating uncondi-
tional jump, as shown in Figures 4.3 and 4.4. The activating jump and a.bnez are
added to AMiL in order to support the extended programming model introduced in
this thesis.
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〈m, r, pc〉 o−−−−−−−→
add x,e1,e2

〈m, r[x 7→ Je1Kr + Je2Kr], pc + 1〉

〈m, r, pc〉 o−−−−−−−→
mul x,e1,e2

〈m, r[x 7→ Je1Kr ∗ Je2Kr], pc + 1〉

〈m, r, pc〉 o−−−−−→
load x,e

〈m, r[x 7→ m[JeKr], pc + 1〉

〈m, r, pc〉 o−−−−−−→
store x,e

〈m[JeKr 7→ x], r, pc + 1〉

〈m, r, pc〉 o−−−−−→
beqz e,l

〈m, r, l if JeKr = 0 else pc + 1〉

〈m, r, pc〉 o−−−−−→
bnez e,l

〈m, r, l if JeKr 6= 0 else pc + 1〉

〈m, r, pc〉 o−−−→
call l

〈m, r[ra 7→ pc + 1], l〉

〈m, r, pc〉 o−−−−→
jmp e

〈m, r, JeKr〉

〈m, r, pc〉 o−−→
ret

〈m, r, r[ra]〉

Figure 4.2: Formal semantics of base AMiL defined as a transition system over
architectural configurations

Non-activating Instructions The Execute rule is applied to persistent instruc-
tions (p), standard instructions (s) in normal execution mode (AC = 0) and ghost
instructions (g) in mimicry mode (AC > 0). In this case, the instruction is executed
as defined by the transition system in Figure 4.2, and its architectural effects are
persisted. Additionally, the activation counter is decremented if the mimicry exit
address (Ex) is reached, as defined in the decrAC function (see Figure 4.4). Sim-
ilarly, the Mimic rule is applied to mimic instructions (m), standard instructions
(s) in mimicry mode, and ghost instructions (g) in normal execution mode. This
rule ignores the architectural effects of the base instruction (〈m, r, pc〉 o−−→

inst
·), the

transition system is only evaluated for its microarchitectural observations o. As in
the Execute rule, the activation counter may be decremented.

Activating Instructions Activating instructions may increment the activation
counter if it is currently set to 0, or if the activation counter was already set, but the
same activating instruction is encountered again (pc = En). The latter is necessary
to ensure correct behavior in the case of nested activations (which may occur in
nested function calls). This is defined by the incrAC function in figure 4.4.

The Activating-Call rule first jumps to the target location l by changing the
program counter, and then enables mimicry mode unconditionally. Both the return
address and the mimicry exit address Ex are set to pc+1, such that mimicry mode is
enabled for the duration of the call. The Activating-Branch rule does not jump
to the target location l. Instead, the mimicry exit address Ex is set to l, such that
mimicry mode is enabled for the duration of the branch. The activation counter
AC is only incremented if the branch condition evaluates to true or if it is a nested
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activation. Similarly, the Activating-Jump rule enables mimicry mode until the
target location is reached, but in this case it happens unconditionally.

Big-step Evaluation Winderix et al. [46] introduce the notion of big-step eval-
uation of a program region [l, l′] , denoted as [l, l′] σ ⇓o σ′. It executes the program
starting at location l in configuration σ until location l′ is reached as part of the
same function call, resulting in configuration σ′, and leaking observation trace o.
The semantics of big-step evaluation are given in Figure 4.5. Most instructions are
handled by the Step and Inst rule, but call instructions are handled separately by
the Call rule to avoid early termination of the evaluation in the case of recursive
function calls.

4.2 Leakage Model and Security Objectives
This thesis adopts the constant-time leakage model as defined by [6], and its ap-
plication to the AMiL ISA proposed by [46]. This model defines the ability of an
attacker to observe (micro)architectural state and infer architectural state. As de-
fined in Section 4.1.2, the evaluation of an instruction in a certain configuration,
given by the relation σ

o−−→
inst

σ′, produces an observation o ∈ O. The semantics of
this leakage model are given by a set of leakage functions λinst : A → O where A
is the set of all possible architectural configurations, and O the set of possible ob-
servations. Instructions add and mul each leak a fixed observation λadd and λmul
respectively, independent of the configuration. For instructions that access mem-
ory, such as load and store, the accessed memory address is leaked, for instance,
through the cache. Furthermore, we assume that control flow is leaked explicitly,
hence branch and jump instructions leak their target address. The leakage functions
adopted from [46] are given in Figure 4.6. Note that activating instructions don’t
leak any observations, as defined by Figure 4.3.

Through program annotations, the developer identifies which parts of the register
map and memory should remain secret. By hardening the program, we aim to avoid
leakage of these secrets. This is modelled by a security policy P that maps registers
and memory locations to two security levels: public and secret. Two configurations
σ and σ′ are considered low-equivalent under this policy, denoted as σ=Pσ′, if they
agree on the public part of their register file and memory map. Since programs
with the same public inputs, but potentially different secret inputs, should leak the
same observations, we say that a program is secure if two executions starting from
low-equivalent states produce the same observations.
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4.2. Leakage Model and Security Objectives

Execute

P [pc] = q.inst AC′ = decrAC(AC, Ex, pc)
execute(q, AC′) 〈m, r, pc〉 o−−→

inst
〈m′, r′, pc′〉

〈m, r, pc, AC, En, Ex〉 o=⇒ 〈m′, r′, pc′, AC′, En, Ex〉

Mimic

P [pc] = q.inst AC′ = decrAC(AC, Ex, pc)
mimic(q, AC′) 〈m, r, pc〉 o−−→

inst
· pc′ = pc + 1

〈m, r, pc, AC, En, Ex〉 o=⇒ 〈m, r, pc′, AC′, En, Ex〉

Activating-Call

P [pc] = a.call l AC′ = decrAC(AC, Ex, pc)
AC′′, En′, Ex′ = incrAC(AC′, En, Ex, pc, pc + 1, true)

r′ = r[ra 7→ pc + 1] pc′ = l

〈m, r, pc, AC, En, Ex〉 ϵ=⇒ 〈m, r′, pc′, AC′′, En′, Ex′〉

Activating-Branch

P [pc] = a.beqz l AC′ = decrAC(AC, Ex, pc)
c = (JeKr = 0) pc′ = pc + 1

AC′′, En′, Ex′ = incrAC(AC′, En, Ex, pc, l, c)
〈m, r, pc, AC, En, Ex〉 ϵ=⇒ 〈m, r, pc′, AC′′, En′, Ex′〉

Activating-Branch

P [pc] = a.bnez l AC′ = decrAC(AC, Ex, pc)
c = (JeKr 6= 0) pc′ = pc + 1

AC′′, En′, Ex′ = incrAC(AC′, En, Ex, pc, l, c)
〈m, r, pc, AC, En, Ex〉 ϵ=⇒ 〈m, r, pc′, AC′′, En′, Ex′〉

Activating-Jump

P [pc] = a.jmp l AC′ = decrAC(AC, Ex, pc)
pc′ = pc + 1

AC′′, En′, Ex′ = incrAC(AC′, En, Ex, pc, l, true)
〈m, r, pc, AC, En, Ex〉 ϵ=⇒ 〈m, r, pc′, AC′′, En′, Ex′〉

Figure 4.3: Evaluation rules for qualified instructions, taken from [46] with minor
additions marked with boxes
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execute(q, AC) ≜ q = p ∨ (q = s ∧AC = 0)
∨ (q = g ∧AC > 0)

mimic(q, AC) ≜ q = m ∨ (q = s ∧AC > 0)
∨ (q = g ∧AC = 0)

decrAC(AC, Ex, pc) ≜
{

AC− 1 if AC = 0 ∧ pc = Ex
AC otherwise

incrAC(AC, En, Ex, pc, Ex′, c) ≜


AC + 1, pc, Ex’ if AC = 0 ∧ c = true

AC + 1, En, Ex if AC > 0 ∧ pc = En
AC, En, Ex otherwise

Figure 4.4: Functions used by evaluation rules in Figure 4.3

Inst

l = l′ σ.pc = l P [l] 6= q.call f σ
o=⇒ σ′

[l, l′] σ ⇓o σ′

Call

l = l′ σ.pc = l P [l] = q.call f

σ
oc=⇒ σf [entry(f), exit(f)] σf ⇓of

σ′ o = oc · of

[l, l′] σ ⇓o σ′

Step

l 6= l′ σ.pc = l [l, l]σ ⇓o′′ σ′′

l′′ = σ′′.pc [l′′, l′] σ ⇓o′ σ′ o = o′′ · o′

[l, l′] σ ⇓o σ′

Figure 4.5: Big-step evaluation of region [l, l′] , taken from [46]
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λadd(〈m, r, pc〉) = add if P [pc] = add x, e1, e2

λmul(〈m, r, pc〉) = mul if P [pc] = mul x, e1, e2

λload(〈m, r, pc〉) = load a if P [pc] = load x, e and JeKr = a

λstore(〈m, r, pc〉) = store a if P [pc] = store e1, e2 and Je2Kr = a

λcall(〈m, r, pc〉) = call l if P [pc] = call l

λjmp(〈m, r, pc〉) = jmp l if P [pc] = jmp e and JeKr = l

λbeqz(〈m, r, pc〉) = br l′ if P [pc] = beqz e, l and l′ =
{

l JeKr = 0
pc + 1 JeKr 6= 0

Figure 4.6: Leakage functions of AMiL taken from [46] where add, mul, load, store,
call, jmp, br are leakage identifiers.
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Chapter 5

Linearization with Architectural
Mimicry

This chapter presents several patterns to linearize secret-dependent branches to
mitigate leakage of secrets on side channels based on control flow. Along with
linearization patterns, additional criteria are specified to ensure both correctness
and security of the hardened program according to the constant-time leakage model.

Section 5.1 introduces key concepts used to describe linearization methods that
make use of AMi. These methods are explained in Section 5.2, and Section 5.3
describes how suitable activating instructions can be chosen in accordance to the
linearized control flow graph. The conditions for a linearization to be correct are
given in Section 5.4, which explains how to nullify persistent side-effects and de-
scribes the need for additional register allocation constraints. Finally, Section 5.5
discusses the security of the linearized program. It elaborates on the need to make
architectural effects of some instructions persistent to ensure that the leakage trace
does not depend on secrets.

5.1 Key Concepts
In this section, we describe several concepts, such as activating edges, ghost edges
and the notion of an activating region.

Definition 1 (Activating edge, Activating region). An activating edge is a pair
(lx, ly) where lx is the location of an activating instruction with target ly. Contrary
to related work, we do not include this edge in the CFG. The region [lx, ly] is called
the activating region of this edge.

Activating regions are pairs of locations that depict the region for which mimicry
mode remains active. Although activating edges are not part of the CFG, we repre-
sent them visually with dotted arrows.
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l0 : beqz c, l2

l1 : add x, x, 3

l2 : ret

(a) Original CFG

l0 : a.beqz c, l2

l1 : add x, x, 3

l2 : ret

(b) Linearized CFG

Figure 5.1: A simple CFG with a single branch (left) and a linearized CFG that
produces the same result (right)

Example 9. Figure 5.1 gives an example of a CFG and a linearized version.
Here, (l0, l2) is an activating edge, and [l0, l2] an activating region. If c = 0
in the linearized program, mimicry mode will be enabled at l0, and it remains
enabled until l2 is reached. Similarly, in the original program, the instructions
within this region will not be executed if the branch is taken.

Under the assumption that l1 does not affect the architectural state, both pro-
grams will produce the same architectural results. However, since control flow does
not depend on c, the linearized program will produce the same microarchitectural
results, independent of the secret c. Hence, a normal control-flow edge may be re-
placed with an activating edge without changing the architectural semantics of the
program, in order to mitigate leakage of secrets.

In the linearized program we assume that for each activating region [lx, ly], ly
post-dominates lx. This is necessary to ensure that after enabling mimicry mode,
it will eventually be disabled when reaching ly before returning from the function.
This condition are formalized as part of a revised notion of a well-behaved activating
region in section 5.4.1.

Definition 2 (Ghost edge). A control-flow edge from block B to block B′ is a ghost
edge if and only if there is an activating jump in B that unconditionally enables
mimicry mode.

Ghost edges are edges that may be present in a linearized CFG, while not being
present in the original CFG. We require that such edges are only taken in mimicry
mode, hence they do not change the semantics of the program, as will be formalized
in section 5.4. The introduction of such edges in the linearized CFG may be useful
to ensure that the exit of an activating region post-dominates the entry, as it enables
the changing the control flow in mimicry mode. Using a ghost edge to divert control
flow to the exit of another activating region may be useful to ensure that the entry
of this region is post-dominated by its exit.
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l0 : jmp ln

l1 :

lm : add x, x, 5

ln :

(a) Original CFG

l0 : a.jmp ln

l1 : jmp lm

lm : add x, x, 5

ln :

(b) Linearized CFG

Figure 5.2: A CFG with a jump (left) and a linearized CFG that produces the
same result (right)

Example 10. Changing control flow in mimicry mode using ghost edges is
illustrated in figure 5.2. The original program never executes the instruction at
location lm, because the jump at l0 is succeeded by ln. On the other hand, in the
linearized CFG, control flow does go through lm. However, since [l0, ln] is an
activating region, and l0 unconditionally enables mimicry mode, we know that
lm will always be mimicked when reached from l0. Hence, l1 → lm is a ghost
edge induced by the jump at l1, and the linearized program produces the same
architectural results as the original program, despite reaching different locations
in the control flow. This is useful when lm is the target of an activating branch
earlier in the program, as this change ensures that control flow will always pass
through lm before reaching ln, which will be further illustrated in section 5.2.

Based on these concepts, we introduce a class of transformations called AMi
linearizations. Intuitively, such linearization only replaces control-flow edges with
activating edges, and each edge that is added to the CFG must be a ghost edge.
Section 5.4 formalizes the correctness of these transformations.

Definition 3 (AMi linearization). Let P be a program. An AMi linearization is a
transformation T that

• replaces some non-activating instructions in P with their activating counter-
part (i.e. replaces control-flow edges with activating edges), or

• adds jump instructions such that for each edge B → B′ in T (P ), B → B′ is
either part of P , or it is a ghost edge (i.e. adds ghost edges)

The transformations shown in Figures 5.1 and 5.2 are basic examples of AMi
linearizations, but an AMi linearization can replace multiple edges with activating
edges, and create multiple ghost edges. For any AMi linearization it holds that edges
that are removed from the CFG are activating edges, while any edges that are added
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are ghost edges. Hence, given the original CFG and a linearized form, the sets of
activating edges and ghost edges can unambiguously be determined. However, both
activating edges and ghost edges will be emphasized in illustrations throughout this
chapter for clarity. In the next section, several methods are introduced to construct a
linearized CFG. The corresponding transformations that result from these methods
will conform with the definition of an AMi linearization.

5.2 Linearization Methods
This section proposes three methods to linearize control flow making use of AMi.
Most existing techniques to linearize control flow in order to mitigate side channel
leakage are similar to if-conversion [13], and require transformation to structured
control flow [12, 48]. More recent studies, however, have introduced the concept
of PCFL [32] as an alternative to if-conversion which avoids such structurization,
which can result in a significant reduction of code size and execution time. These
techniques can also be applied to mitigate side channel leakage, as shown by Soares
et al. [43].

Both of these methods make use of predication or conditional selection. In this
section, we apply these techniques to AMi, and propose three linearization methods.
Each of these methods is an AMi linearization as defined in Definition 3. To facilitate
the description of linearization methods, instructions will be omitted from CFGs.
Instead, each linearization method will be characterized by the set of activating
edges and the set of ghost edges they produce, which can be represented visually.

5.2.1 Method 1: Structurization to Triangle-Structured Control
Flow

The linearization pattern introduced by Winderix et al. [46] can only be applied to
triangle-structured control flow, which can be achieved by structurizing the original
CFG to a triangle-structured CFG.

Example 11. Method 1 is illustrated in Figure 5.3, where the CFG is first
structurized to a triangle-structured CFG, after which several edges are replaced
with activating edges. The resulting activating regions [0, F2], [1, F1], [F1, F2]
and [F2, 5] are well-behaved, since they are SESE regions.

This method has two main drawbacks. The introduction of another conditional
branch requires that the branch condition outlives the first branch region, which
introduces additional register pressure. Furthermore, in the structurized CFG of
Example 11, any variable that lives from block 2 or 3 to block 5 is live at block
4, while this is not the case in the original CFG. Hence, the structurized CFG has
higher register pressure than the original CFG. However, in practice, either the
region of block 1, or the region of block 4 is executed, but not both. Consequently,
such register allocation constraints are not necessary to maintain correctness.
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0
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2 3
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(a) Original CFG

0

1

2

F1

3

F2

4

5

(b) Triangle-structured CFG

0

1

2

F1

3

F2

4

5

(c) Linearized CFG

Figure 5.3: Example of triangle structurization and linearization of structured
control flow graph
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5.2.2 Method 2: Linearization with Ghost Edges

If all conditional branches are structured, the regions that follow the conditional
branch will be SESE regions. In this case, the program structure tree [22] can
be built to identify all branch regions. This is a hierarchical representation of the
control structure of the program where each node is a SESE region. By using ghost
edges, control can flow from one branch region to another branch region, by creating
ghost edges from the exit of a branch region to the target of that branch.

Either way, only one of the branch regions is executed, and the other one is mim-
icked. This matches the behavior of the original program where control flow passes
through only one of those regions. However, the linearized form produces the micro-
architectural effects of both regions, hence leakage of the outcome of this branch
condition is mitigated. To make sure that the newly added edges are considered
ghost edges, one must ensure that mimicry mode is enabled, requiring other outgo-
ing edges of the exit block to become activating edges. Furthermore, this ensures
that branch target post-dominates the activating branch, which is a requirement
for the well-behavedness of an activating region. However, the activating regions
are no longer considered well-behaved by the original formalization by Winderix et
al. [46], since they are not SESE. For this reason, a relaxation of this notion of
well-behavedness is introduced in Section 5.4.1.

Example 12. This is illustrated in Figure 5.4, where we assume that block
0 contains a secret-dependent branch. The branch regions of this branch are
determined, and we find regions [1, 4] and [5, 5]. The exit of [1, 4] is 4, hence
we create ghost edges from 4 to the entry of [5, 5]. To ensure that this is a
ghost edge, we need to make sure that mimicry mode is enabled before taking
this edge. As a result, the edge from 4 to 6 becomes an activating edge. The
reason why this is necessary is as follows. When taking the ghost edge 4 → 5,
there are two options. Either mimicry mode was already enabled for activating
region [0, 5], in which case blocks 1, 2 or 3 and 4 are mimicked, any activating
instructions in block 4 have no effect, and after taking the ghost edge, block 5
is executed normally.

If mimicry mode was not enabled for region [0, 5], it will be enabled for
region [4, 6], because of the outgoing activating edge in block 4. Since there is an
outgoing activating edge and an outgoing ghost edge, we make sure that mimicry
mode is enabled unconditionally, by using an activating jump instruction in
block 4. This will be elaborated upon in Section 5.3. In this case, 1, 2 or 3 and
4 are executed normally, and block 5 is mimicked.

Note that in the linearized CFG, the targets of activating branches post-
dominate that branch, but the activating regions [0, 5] and [4, 6] are not SESE,
meaning that those regions are not well-behaved according to the well-behavedness
proposition of Winderix et al. [46]. As a result, the well-behavedness proposi-
tion needs to be relaxed in order to support this linearization method.
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(a) Before linearization
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(b) After linearization

Figure 5.4: Example of linearization of the branch in block 0 using ghost edges

5.2.3 Method 3: Linearization of Reducible Control Flow

The method described in the previous section can be generalized to non-structured
secret-dependent branches, assuming that the CFG is reducible. Although the re-
gions of a non-structured branch are not SESE, similar methods can be applied to
all exiting blocks of the region in such a way that the resulting activating regions
are well-behaved, by ensuring that the exit of each activating region post-dominates
the entry.

Partial Control Flow Linearization

Moll and Hack [32] proposed a method for partial control-flow linearization (PCFL)
of reducible control flow in the context of vectorization of a SIMD program while
preserving uniform branches. Soares et al. [43] show that this method can also
be applied to eliminate side channels. Assuming a reducible CFG with back edges
removed, a topological ordering of such DAG only visits a node after all its prede-
cessors have been visited. We adopt the definition of a compact topological ordering
as defined by [43] and [32].

Definition 4 (Compact Topological Ordering). An n-sequence of blocks B1, . . . , Bn

is dominance compact if whenever B1 dominates Bn then B1 dominates every Bi,
1 < i < n. Similarly, an n-sequence of blocks B1, . . . , Bn is loop compact if whenever
B1 and Bn belong to a loop L then every Bi, 1 < i < n, belong to L as well. A
topological ordering of a CFG is compact if it is both dominance and loop compact
with respect to all dominance sets and loops.

Both Moll and Hack [32] and Soares et al. [43] show that when their methods
are applied using a compact topological ordering, uniform branches [32] or branches
that don’t depend on secrets [43] will be preserved. With this notion of compactness,
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we give Algorithm 1 based on [32], which computes the set of activating edges and
the set of ghost edges for a reducible CFG with back edges removed. Given these
sets, branch terminators can be rewritten to linearize the program accordingly, as
will be explained in section 5.3.

The main idea behind this algorithm is the use of deferral edges D throughout
the algorithm. When an edge (b, s) is removed from the CFG, a deferral edge
(next, s) is added for each remaining successor “next”. Such deferral edge guarantees
that the target of the edge post-dominates the source in the linearized program.
Throughout the algorithm, these deferral edges are moved to successor blocks while
maintaining this post-dominance relation. This ensures that even though some
successors have been removed from secret-dependent branches, those successors will
still be reached eventually. The changes introduced in this thesis make sure that
mimicry mode is enabled until this successor is reached, to ensure that the program
behaves correctly. Furthermore, if a deferral edge is materialized into a control-flow
edge in the linearized program that was not already present in the original CFG,
we ensure that this is a ghost edge. Under these conditions, this linearization is an
AMi linearization, which is correct, as will be explained in Section 5.4.4.

The original algorithm constructs a set El of control-flow edges in the linearized
CFG, creating a directed acyclic graph (DAG), after which back edges B are rein-
serted. Instead of computing set El, we mark which control-flow edge in the original
CFG should be replaced by activating edges by adding them to set A. Similarly, any
new edges will become ghost edges in the linearized CFG, and they are added to the
set G. One can show that G = El \E and A = E \(El∪B). Here El refers to the set
of edges in the linearized CFG, as constructed by the original algorithm from [32]
and shown in Algorithm 1 in comments. Hence, El = (E \ (A ∪ B)) ∪ G, meaning
that the linearized DAG can be constructed by removing activating edges and back
edges from the original CFG, and adding ghost edges. To obtain the linearized CFG
with loops from the original CFG, we reinsert back edges B.

Example 13. This algorithm is illustrated on an example in Figure 5.5. Fig-
ure 5.5a shows the original CFG where the blocks are ordered in a compact
topological order as signified by their number.

First, block 0 is visited. We will assume that 0 contains a secret-dependent
branch. We choose block 1, the successor with the lowest number, as the single
successor in the linearized CFG (“next” in Algorithm 1). Then we add acti-
vating edges to each other successor, and we add deferral edges from block 1 to
each other successor or deferral target in T , but note that T is currently empty.
This results in Figure 5.5b.

Next, we visit block 1. Since 1 does not contain a secret-dependent branch,
we iterate over all its successors, and check if there is a deferral target in T
with a lower number than the successor. This is not the case for both succes-
sors, hence no ghost edges are created. We also create new deferral edges from
each successor to the current deferral targets in T , and clean up any of the
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Algorithm 1: Partial Linearization with AMi
input : F , a function with edges E (with all backedges removed)

Bsd, set of secret-dependent branch blocks
output: A, set of activating edges

G, set of ghost edges
D ← ∅ ; // Set of deferral edges
foreach b ∈ compactOrder(F ) do

T ← {s | (b, s) ∈ D} ; // Current deferral targets
if b /∈ Bsd then

foreach s ∈ succE(b) do
next← min(T ∪ {s});
if next 6= s then

G← G ∪ (b, next) ; // Deferral edge becomes ghost edge
A← A ∪ (b, s) ; // Add this outgoing edge to A

end
// El ← El ∪ {(b, next)};

// Add deferral edges from next to this successor or
deferral targets

D ← D ∪ {(next, t) | t ∈ (T ∪ {s}) \ {next}};
end

else
S ← succE(b);
next← min(T ∪ S);
if next ∈ T \ S then

G← G ∪ (b, next) ; // Deferral edges become ghost edges
end
// El ← El ∪ {(b, next)};

// Add other outgoing edges to A
A← A ∪ {(b, s) | s ∈ S \ {next}};
// Add deferral edges from next to other successors or

deferral targets
D ← D ∪ {(next, t) | t ∈ (T ∪ S) \ {next}};

end
// Remove all outgoing deferral edges
D ← D \ {(b, s) | (b, s) ∈ D};

end
assert T 6= ∅;
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outgoing deferral edges of block 1 before moving on to the next block, resulting
in Figure 5.5c.

The next block we visit is block 2. We also assume that this block does not
contain a secret-dependent branch. However, deferral target 4 ∈ T has a lower
number than the successor 5 of block 2. This means that deferral target 4 will
be chosen as successor “next”, and a ghost edge will be created from 2 to 4.
Any other outgoing edge to a successor with a higher number will become an
activating edge. We also create a deferral edge from 4 to 5. This results in
Figure 5.5d.

When visiting block 3 and block 4, we find that the single successor of the
branch matches the deferral target. In this case, nothing is changed, and we
can simply remove the deferral edge.

5.3 Rewriting Branch Terminators
The methods described in the previous section determine which edges should be
removed from the CFG (activating edges), and which edges should be added to the
CFG (ghost edges) in order to linearize the program. This section describes how
given a CFG, a set of activating edges A, and a set of ghost edges G, appropriate
activating instructions and branches can be inserted in the linearized program. We
recall that for each activating edge (B, B′), there must be some activating instruction
in B with B′ as target. Additionally, for each ghost edge (B, B′), B unconditionally
enables mimicry mode on exit.

With this in mind, activating instructions for each block can be determined.
Figures 5.6 and 5.7 give an exhaustive overview of how the terminators must be
chosen given sets A and G. In some cases of this exhaustive overview, side channel
leakage of the branch condition is mitigated, while in other cases this is not possible
due to the requirements of a ghost edge. In general, leakage is mitigated if the
conditional branch of a block is replaced with an activating branch, which is the case
if the block has a single successor in the linearized CFG. All methods introduced in
the previous section ensure that this holds if the block contains a secret-dependent
branch, to ensure that leakage of secret branch conditions is always mitigated.

For certain instantiations of A and G, beqz (branch if equal to zero) must be
replaced with bnez (branch if not equal to zero) and the targets of the conditional
branch and the jump need to be swapped. For example, if a beqz instruction at l0
has la as target, but (l0, lb) ∈ A, we cannot replace this branch with an activating
branch a.beqz, since we do no want l0 → la to become an activating edge. By
replacing beqz c, la and jmp lb with bnez c, lb and jmp la, program semantics are
preserved, and bnez can be replaced with an activating branch.

Example 14. Recall the linearized program from the example in Figure 5.5f
and assume that the terminators in the original CFG shown in Figure 5.5a
are given by Figure 5.8a. For blocks 1, 3 and 4, no outgoing edges changed
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0

1

2 3

4

5

(a) Original CFG

0

1

2 3

4

5

(b) After visiting block 0

0

1
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4

5

(c) After visiting block 1

0

1

2 3

4

5

(d) After visiting block 2

0

1

2 3

4

5

(e) After visiting block 3

0

1

2 3

4

5

(f) After visiting block 4

Figure 5.5: Example of algorithm 1. Dotted edges are activating edges added to
A, and will no longer be part of the CFG. Red dashed edges are used to represent
the deferral edge. Any other edge that is added to the CFG is a ghost edge, as
marked in blue (in this example, the edge from 2 to 4 is a ghost edge).
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E = {(l0, la)} Gl0 = ∅ Gl0 = {(l0, lc)}

Al0 = ∅

l0 : jmp la

la : lc :

Al0 = {(l0, la)}

l0 : a.jmp la

l1 : jmp lc

la : lc :

Figure 5.6: Overview of activating instructions and branches that must be chosen
for the given sets of activating edges A and ghost edges G if the original branch
block contains a single unconditional jump.

compared to the original CFG, hence we can use the same terminators as in
the original CFG.

Block 0 has a single outgoing control-flow edge, and a single outgoing acti-
vating edge. As given by the first column in Figure 5.7, we need an activating
branch, followed by an unconditional jump. Since the target of the activating
edge is also the target of the beqz instruction in the original CFG, we replace
the beqz instruction with an activating branch. Because we have replaced beqz
c1 with a.beqz c1, leakage of c1 through control flow is mitigated against.

Block 2 has an outgoing ghost edge, and an outgoing activating edge. This
case is described by Figure 5.6, hence we replace the existing jmp instruction
with an activating jump, and add another jump instruction for the ghost edge.

Some instantiations of the sets A and G are invalid, in which case no appropriate
instructions can be chosen. For example, if there are no activating edge, but an edge
is added to the linearized CFG, this edge can never be a valid ghost edge, because
ghost edges require that mimicry mode is enabled. Similarly, if all outgoing edges
of a block in the original CFG are removed from the CFG, because they are marked
as activating edges, and no ghost edges are added, there is no valid instantiation
of terminators, since the block in the linearized CFG would have no successors,
yet there are outgoing activating edges whose target must be reached eventually.
Such cases of invalid instantiations of sets A and G do not occur when applying the
linearization methods described in section 5.2.
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E =
{(l0, la), (l0, lb)}

Gl0 = ∅ Gl0 = {(l0, lc)}

Al0 = ∅

l0 : beqz c, la

l1 : jmp lb

la : lb : lc :

Al0 = {(l0, la)}

l0 : a.beqz c, la

l1 : jmp lb

la : lb : lc :

l0 : bnez c, lb

l1 : a.jmp la

l2 : jmp lc

la : lb : lc :

Al0 = {(l0, lb)}

l0 : a.bnez c, lb

l1 : jmp la

la : lb : lc :

l0 : beqz c, la

l1 : a.jmp lb

l2 : jmp lc

la : lb : lc :

Al0 =
{(l0, la), (l0, lb)}

l0 : a.beqz c, la

l1 : a.jmp lb

l2 : jmp lc

la : lb : lc :

Figure 5.7: Overview of activating instructions and branches that must be chosen
for the given sets of activating edges A and ghost edges G when the branch block
contains a conditional branch (assuming beqz without loss of generality). The cases
in which side-channel leakage of the branch is mitigated is shown with boxes .
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l0 : beqz c1, l4

: jmp l1

l1 : beqz c2, l3

: jmp l2

l2 : jmp l5 l3 : jmp l4

l4 : jmp l5

l5 :

(a) Original CFG

l0 : a.beqz c1, l4

: jmp l1

l1 : beqz c2, l3

: jmp l2

l2 : a.jmp l5

: jmp l4
l3 : jmp l4

l4 : jmp l5

l5 :

(b) Linearized CFG

Figure 5.8: Example of a CFG and its linearized version with terminators

5.4 Correctness
This section formalizes the correctness of the linearization methods described in
Section 5.2. First, Section 5.4.1 relaxes the well-behavedness proposition of [46].
Section 5.4.2 formalizes the correctness of the regions over which activating branches
jump. To achieve correct regions, register allocation needs to be constrained, as ex-
plained in Section 5.4.3. Finally, Section 5.4.4 formalizes and proves the correctness
of the linearization methods under the assumption that all activating regions are
well-behaved and correct.

5.4.1 Well-behaved Activating Region

Replacing branches with activating branches is only valid if the region spanned
between the successors and the target of the activating branch is SESE, as described
in the well-behavedness proposition in [46]. This limits the applicability of the
linearization pattern discussed in previous sections to triangle-structured control
flow, since method 1 is the only linearization method that results in well-behaved
activating regions. In order to support the linearization methods introduced in this
thesis, the well-behavedness proposition and the hypotheses under which it holds,
as defined by [46], must be relaxed, as motivated by the following example.

Example 15. Recall the linearized CFG from Figure 5.5f (linearization method
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3), which contains two activating regions, namely [0, 4] and [2, 5]. The well-
behavedness proposition from [46] only holds for activating regions that are
SESE, where they consider activating edges to be part of the CFG. The activat-
ing regions in this example are not SESE, since [0, 4] has a second exiting edge
2 → 5, and [2, 5] can also be entered through 3 → 4 and 0 → 4. However, this
program is still correct, and therefore it would be desirable to relax the condi-
tions for the well-behavedness of an activating region, such that these regions
would also be considered well-behaved

We relax the second hypothesis from [46] that states that activating regions
are SESE by (1) not including activating edges in the CFG, and (2) removing the
assumption that the entry of an activating region dominates the exit. As a conse-
quence, the well-behavedness proposition from [46] no longer holds. Hence, we relax
this proposition and adapt the proof accordingly.

To achieve this relaxation, we change the notion of a CFG used by [46], and
replace it with the semantics of the successor relation defined in section 2.3.1, which
does not consider activating edges to be control-flow edges. The motivation for this
change is that activating edges do not affect control flow, and execution will always
continue at the subsequent location in the program as stated in figure 4.3. This
change weakens the second hypothesis, which states that each activating region is
SESE. To give an example of (1), consider the linearized program in figure 5.4b
from method 2. The activating region [0, 5] would not be considered well-behaved
by the original formulation of the proposition, since it is not SESE if activating edges
are considered control-flow edges. If we don’t consider them as part of the CFG,
the activating region is considered SESE, and hence well-behaved. Furthermore,
an activating region does not need to be single-entry (2), since entering the region
through paths that don’t contain the entry (i.e. the activating instruction) does
not affect the behavior of the activating region. However, to ensure that nested
activations behave well, each cycle containing the entry of the activating region must
also contain the exit. We replace the second hypothesis of [46] with the following:

Hypothesis 2 (Well-behavedness Criterion). For each activating region [l, l′] in the
program, the following holds:

• l′ post-dominates l

• each cycle containing l also contains l′ and vice-versa

As a consequence of these relaxations, proposition 1 (the well-behavedness propo-
sition of [46]) no longer holds under this altered version of the second hypothesis,
since early termination of an activating region is possible.

Example 16. Consider the linearized CFG in Figure 5.5f. Hypothesis 2 holds
for activating region [2, 5]. However, Proposition 1 does not hold.

Suppose that the activating branch in block 0 enabled mimicry mode, setting
the mimicry exit address Ex = 4, and block 2 is reached during mimic execution.
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The activating jump in block 2 does not affect the mimicry exit address Ex, and
the ghost edge from 2 to 4 is taken. Proposition 1 states that AC must remain
set for the duration of [2, 5]. However, since Ex is set to 4, AC will be unset
when reaching block 4, before 5 is reached, resulting in early termination of the
activating region.

Such early termination of an activating region is explicitly disallowed by the for-
malization of [46]. However, early termination does not necessarily lead to incorrect
behavior of the linearized program, hence it should be allowed. To rectify this limi-
tation, the well-behavedness proposition can be revised such that it only applies to
regions [l, l′] where AC was incremented by the activating instruction at l.

Proposition 2 (Well-behaved Activating Region (revised)). For any activating re-
gion [l, l′] and valid configuration σ such that [l, l′]σ ⇓o σ′, if AC is incremented at
location l:

1) it remains set during the execution of [l, l′] (including recursive function calls
but excluding l′), and

2) it is restored to its initial value during the evaluation of the instruction at location
l′.

This revised proposition for a well-behaved activating region enables the lin-
earization methods for structured and reducible control flow introduced in this the-
sis. The proof of [46] is adapted to this proposition in appendix section A.2.

The following proposition states that the application of algorithm 1 results in
only well-behaved activating regions under the assumption that the source CFG
is reducible, and each exiting block of a loop does not contain a secret-dependent
branch.

Proposition 3 (Linearization Results in Well-behaved Activating Regions). Algo-
rithm 1 (method 3) results in well-behaved activating regions.

A proof is given in Appendix A.3 of Appendix A, and we note that a similar
argument can be made for the other two linearization methods.

5.4.2 Correct Region

The activating regions that result from the application of these linearization methods
are only correct under the assumption that the live state is unaffected when executed
in mimicry mode. The live state is a partition of the register bank and the memory
map. We define this partition as follows.

Definition 5 (Live state). Given a program P , the live state of the program at loca-
tion l, denoted as Ll

P is a function that maps an AMi configuration (or architectural
configuration) σ to a set of live registers and memory locations such that

• For each (x, v) ∈ σ.r, (x, v) ∈ Ll
P if and only if live(l, x) in P .
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• We assume a liveness partition for memory locations.

In other words, a register is part of the live state if it is live according to the
liveness defined in Section 2.4.3. Based on this notion of the live state of the program,
two configurations can be compared.

Definition 6 (Live-equivalence). Two configurations σ and σ′ in respective pro-
grams P and P ′ are live-equivalent if Lσ.pc

P (σ) = Lσ.pc
P (σ′) and Lσ′.pc

P ′ (σ) = Lσ′.pc
P ′ (σ′).

Notation: σ=Lσ′.

This definition states that when comparing two configurations in two different
programs, registers or memory locations must have the same values if they are
considered live by one of the programs at the respective program counters in each
program. Note that P may be equal to P ′, in which case the live state at different
locations in the same program can be compared.

Some instructions have architectural side effects and may affect the live state,
even in mimicry mode, notably persistent instructions and ghost instructions. In
particular, store operations are always persistent, meaning that they will always
write to memory. In mimicry mode, such undesired side effects should be prevented.

Recall that Proposition 2 relaxes the conditions under which an activating region
is considered well-behaved. Similarly, the correctness definition from [46] can be
relaxed such that it only applies to a region [l1, ln] if AC was incremented right
before entering this region.

Definition 7 (Correct region). Let [l0, ln] be a well-behaved, terminating activating
region. The terminating region [l1, ln] is correct if the following holds for any (m, r).
If AC was incremented at l0 and [l1, ln]〈m, r, l1, 1, l0, ln〉 ⇓o 〈m′, r′, ln, 0,−,−〉, then
〈m, r, l1〉=L〈m′, r′, ln〉.

Intuitively, this states that if mimicry mode was enabled at the start of an
activating region, the live state of the program should not be affected by the mimic
execution of this region. The following proposition gives a criterion for an activating
region to be correct, which we state without proof.

Proposition 4 (Region Correctness Criterion). A region [l0, ln] is correct if the
following holds for any location l in the region.

• if l contains a store instruction store v, a, then l − 1 contains a ghost load
g.load v, a

• if l contains a persistent instruction or a ghost instruction that defines x, then
x is not part of the live state at l.

The pattern in Figure 5.9 can be applied to nullify a store operation, as is also
illustrated by Winderix et al. [46]. By adding a ghost load before a store operation
of register x to location v, we ensure that in mimicry mode, the original value stored
at location v is loaded into x before storing x back to v, nullifying the effect of the
store.
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l0 :
l1 : p.sw x, v

l2 :

a) Original instruction

l0 : g.lw x, v

l1 : p.sw x, v

l2 :

b) After adding ghost load

Figure 5.9: Ghost load pattern

l0 :
l1 :
l2 : p.sw x, v

l3 :

a) Original instruction

l0 : s.add y, x, 0
l1 : g.lw y, v

l2 : p.sw y, v

l3 :

b) After adding ghost load

Figure 5.10: Ghost load pattern (with free register y)

Note that since x may be part of the live state, it would not always be correct
to define this register with a ghost load. Therefore, it may be necessary to use a
free register y that is not part of the live state of the activating region, as illustrated
in Figure 5.10. Here, we copy register x to free register y (add y, x, 0) in standard
execution mode, while loading from location v to y in mimicry mode. Instead of
storing register x, we instead store register y, which contains either the value stored
in x, or the value stored at location v, depending on the mode of execution.

However, program hardening is applied after registers have already been allo-
cated, meaning that such free register y may not be available. To address this,
Section 5.4.3 describes ways to constrain the register allocation to ensure that such
register is reserved, or to ensure that register x used by a store operation is not part
of the live state. Similarly, register allocation constraints are used to ensure that
persistent instructions don’t define registers that are part of the live state in the
linearized program.

5.4.3 Register Allocation Constraints

As mentioned in the previous section, persistent instructions or ghost instructions
within an activating region may break the correctness of that activating region,
because linearization is applied after register allocation. First we motivate why
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linearization cannot be applied before register allocation. Usually, compilers use SSA
form before register allocation. Unfortunately, it is not possible to express an AMi-
linearized program in SSA form, since ϕ-nodes select between results depending on
the predecessor location during execution, but they cannot be used to select between
results from different activating regions. Blocks in a linearized program only have a
single predecessor, since activating edges are not considered to be part of the CFG.
If one would try to express the linearized program before register allocation without
using SSA form, liveness analysis would still yield undesirable results. Consequently,
register allocation would lead to an incorrect program. This is illustrated by the
following example.

Example 17. Consider the CFG in Figure 5.11a where a ϕ-node is used to
select between v2 and v4 depending on the predecessor during execution. Before
register allocation is applied, ϕ-nodes are eliminated, resulting in Figure 5.11b.

Suppose that one of the linearization methods would be applied, resulting
in Figure 5.11c. When computing the liveness of variables, the first definition
of v2 at l2 would be considered dead, since there are no uses before the next
definition of v2 at l5. On each path from l2 to the function exit, l5 is reached,
and there is no use of v2 before l5. As a consequence, the register allocator may
assign the same physical register to v2 and v3, since v2 is not live at l4 where
v3 is live, resulting in Figure 5.11d. This program is incorrect, since physical
register x is overwritten by the persistent instruction at l4.

The intended behavior of the program is that either the instruction l2 or
the one at l5 is executed while the other is mimicked. That way, only one of
those instructions would define v2, or x. But this cannot be expressed using the
classical notion of liveness, where the first definition of v2 at l2 is considered
dead, since it would always be redefined at l5. This is not how standard AMi
instructions behave in practice.

As a result, linearization must be applied after register allocation if we do not
integrate AMi semantics in the compiler. However, linearization after register allo-
cation may still break the correctness of the program, as illustrated by the following
example.

Example 18. Figure 5.12 illustrates how linearization can lead to an incorrect
program. In this example, the regions that follow the activating regions are
not correct, because register x is part of the live state of these regions. Indeed,
register x is live out of the block at l2 and live into the block at l4. The persistent
instructions at l1 and l4 define register x, and this effect is also applied in
mimicry mode. Hence, the correctness of the activating region is broken, since
the live state of the activating region is modified in mimicry mode. In this
example, this means both linearized forms will return 18 or 19 depending on c,
while the original program returns either 8 or 14.
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l0 : beqz c, l4

l1 : p.add v1, 0, 5
l2 : s.add v2, 0, 3
l3 : jmp l6

l4 : p.add v3, 0, 10
l5 : s.add v4, 0, 4

l6 : phi v5, v2, v4

l7 : add u, v5, 0
l8 : ret

(a) A CFG before register allocation

l0 : beqz c, l4

l1 : p.add v1, 0, 5
l2 : s.add v2, 0, 3
l3 : a.jmp l6

l4 : p.add v3, 0, 10
l5 : s.add v2, 0, 4

l6 : add u, v2, 0
l7 : ret

(b) A CFG before register allocation after
eliminating ϕ-nodes

l0 : a.beqz c, l4

l1 : p.add v1, 0, 5
l2 : s.add v2, 0, 3
l3 : a.jmp l6

l4 : p.add v3, 0, 10
l5 : s.add v2, 0, 4

l6 : add u, v2, 0
l7 : ret

(c) A linearized CFG before register allocation

l0 : a.beqz c, l4

l1 : p.add x, 0, 5
l2 : s.add x, 0, 3
l3 : a.jmp l6

l4 : p.add x, 0, 10
l5 : s.add x, 0, 4

l6 : add u, x, 0
l7 : ret

(d) A linearized CFG after register allocation
where x ∈ Regsp

Figure 5.11: Illustration of problems with AMi and register allocation (c, u ∈
Regsp are input and output registers respectively)
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l0 : beqz c, l4

l1 : p.add x, 0, 5
l2 : s.add x, 0, 3
l3 : jmp c, l6

l4 : p.add x, 0, 10
l5 : s.add x, 0, 4

l6 : ret x

(a) A CFG after register allocation where x ∈ Regsp

l0 : a.beqz c, l3

l1 : p.add x, 0, 5
l2 : s.add x, 0, 3

l3 : a.bnez c, l6

l4 : p.add x, 0, 10
l5 : s.add x, 0, 4

l6 : ret x

l0 : a.beqz c, l4

l1 : p.add x, 0, 5
l2 : s.add x, 0, 3
l3 : a.jmp c, l6

l4 : p.add x, 0, 10
l5 : s.add x, 0, 4

l6 : ret x

(b) Two linearized versions of the CFG

Figure 5.12: A CFG after register allocation (a), and two linearized versions of
this CFG (b)

Originally, the interference graph only includes interference edges between virtual
registers if there is a location at which both are live. To solve the issue described in
this section, additional constraints must be added to the interference graph of the
original CFG. Specifically, every variable that is live on an activating edge in the
original CFG (live-out of the branch block and live-in of the target block) conflicts
with every variable defined by a persistent instruction or ghost edge in the activating
region of that edge, in addition to the existing constraints. This ensures that the
instructions within the region don’t affect the live state at the boundaries of the
region, hence the region is correct according to Definition 7.

Example 19. We illustrate how additional constraints are added on the exam-
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ples in Figure 5.11, and will apply register allocation on Figure 5.11a. Here,
the interference graph initially has no constraints between the virtual registers,
due to the minimalistic nature of the example. In more realistic examples,
the interference graph will already include constraints between virtual registers
that are live at the same location. Applying register allocation on this CFG
without additional constraints leads to incorrect programs after linearization,
as illustrated in Figure 5.12.

To find the constraints that need to be added, we first determine how we
will linearize after register allocation. That way, we can identify all activating
edges and activating regions, as shown in Figure 5.11c, without committing this
linearization to the CFG. Based on this information, we determine additional
constraints as follows. Consider the control-flow edge l3 → l6 in Figure 5.11b,
which will become an activating edge in the linearized program. Since v2 is
defined at l2 and used at l6, it is live on this edge, hence it conflicts with every
variable defined by a persistent instruction in the activating region of this edge.
The activating region is [l3, l6], which contains a persistent instruction at l4
that defines v3, thus we add a constraint between v2 and v3 to the interference
graph. No variables are live on the control-flow edge l0 → l4, hence there are
no registers that interfere with the persistent instruction at l1.

Applying register allocation while taking these additional constraints into
account will ensure that different physical registers are assigned to v2 and v3,
resulting in correct activating regions.

A shortcoming of Definition 7 is that anything defined persistently within a
correct region cannot outlive this region, otherwise it would be live at the exit, and
hence the initial configuration would not be live-equivalent with the configuration
after executing the region.

5.4.4 Linearization Correctness

This section described the correctness of applying the linearization methods de-
scribed in Section 5.2. First, we can define the correctness of a transformation.

Definition 8 (Correct program transformation). A program transformation T is
correct if the following holds for any program P and configuration σ. If P σ ⇓o σn

and T (P ) σ ⇓o σ′
n, then σn =L σ′

n.

Intuitively, this states that both the original program P and the transformed
program T (P ) have the same effect on the live state. The linearization methods
described in Section 5.2 are AMi linearizations, as defined by Definition 3. We state
when AMi linearizations are correct program transformations.

Theorem 1 (Correctness of AMi Linearization). Let P be a program and T an
AMi linearization as defined by Definition 3. Then T is correct if for each activating
region [lx, ly] in T (P ), [lx, ly] is well-behaved (Proposition 2), and [lx+1, ly] is
correct (Definition 7).
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A sketch of a proof by induction on the amount of big-step evaluation steps
is given in Appendix A.1. The idea behind this inductive proof is that we take
single evaluation steps in the case the instruction at T (P )[ln] is not activating,
since the instructions in both programs will be equal. If the instruction at T (P )[ln]
is activating, we either don’t enable mimicry mode, in which case the instruction
behaves identically to the one at P [ln], or we enable mimicry mode for the duration
of the activating region. If mimicry mode is enabled, we apply the definition of a
correct region (Definition 7) to skip to the end of the activating region where mimicry
mode is disabled again (since the activating region is assumed to be well-behaved as
part of the induction hypotheses), hence a large step is taken during the induction.
In the original program, the branch at P [ln] will be taken, and execution continues
at the target location. In both cases the live state is unaffected, and we continue
the induction at the target location. This means that at any inductions, mimicry
mode is disabled, and the inductive argument still holds regardless of how many
ghost edges are added by the linearization, since the induction always jumps past
the ghost edges. This way the intuitive idea of “ghost edges don’t break correctness”
is formalized into a proof.

Linearization Methods are AMi Linearizations

Finally, we show that the methods described in Section 5.2 are AMi linearizations.
When combined with the result of Proposition 3, the correctness theorem applies.

Recall Definition 3, which states that an AMi linearization can only (1) replace
control-flow edges with activating edges or (2) add ghost edges. On the one hand,
when linearizing triangle-structured control flow (method 1), no additional edges
are created, but some edges are replaced with activating edges. On the other hand,
when linearizing structured control flow (method 2), we make use of ghost edges
from the exiting blocks of one branch region to the branch target. Additionally,
we make sure that all other outgoing edge of the exiting block are replaced with
activating edges. As can be seen in the lower right cases in Figures 5.6 and 5.7,
this results in the creation of an activating jump, hence mimicry mode is enabled
unconditionally, and the newly added edges are valid ghost edges.

A similar argument can be made when linearizing reducible control flow (method
3) with Algorithm 1. Activating edges (b, s) are only added if b → s is already a
control-flow edge of the original CFG. Whenever ghost edges are added to set G,
we ensure that all other outgoing edges become activating edges by adding them to
set A. Hence, mimicry mode will always be enabled when leaving a block through
a ghost edge.

5.5 Security
In order to satisfy the security objective defined in Section 4.2, execution of an
activating region in mimicry mode must be indistinguishable from normal execution
of said region, meaning that both executions must leak the same observations. We
adopt the notion of a secure region as defined by Winderix et al.
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Definition 9 (Secure region). Let [l0, ln] be a well-behaved, terminating acti-
vating region. The terminating region [l1, ln] is secure if the following holds for
any low-equivalent (m, r)=P(m′, r′), and configurations σ0 = 〈m, r, l1, 0,−,−〉, σ′

0 =
〈m′, r′, l1, 0,−,−〉, σ′′

0 = 〈m′, r′, l1, 1, l0, ln〉:

1. if [l1, ln]σ0 ⇓o σ1 and [l1, ln]σ′
0 ⇓o′ σ′

1 then o = o′ and σ1=Pσ′
1

2. if [l1, ln]σ0 ⇓o σ1 and [l1, ln]σ′′
0 ⇓o′′ σ′

1 then o = o′′ and σ1=Pσ′′
1

The first condition states that [l1, ln] is secure by itself, meaning that it should
not leak any secret into the public part or as observations. Taint analysis can be used
to determine the flow of secret data, as explained in Section 6.6. If through data de-
pendencies or control dependencies, secret data flows to a certain register of memory
location, this register or memory location should also be considered secret. Since
secret data should not be leaked through microarchitectural observations, a secure
program must not use a secret register to compute a memory address, or to com-
pute a branch condition. To mitigate against such leakage, we reject programs with
secret-dependent memory accesses, and we eliminate all secret-dependent branches
by linearizing them.

The second condition states that the region produces the same microarchitectural
observations regardless of whether mimicry mode is enabled. To achieve this, the
same memory locations must be accessed regardless of the state of AC, and the
same path in the control flow graph must be taken in each case. As described
by Winderix et al. [46]: “if a value can leak to the microarchitectural state, any
architectural update that this value depends on should always be executed regardless
of the processor mode.” In the following section, we elaborate on this and describe
which instructions need to be executed persistently.

5.5.1 Persistent Computation and Taint Analysis

To determine which branches need to be linearized, we apply taint analysis to iden-
tify secret-dependent branches. Data dependencies must certainly be taken into
account, since most operations can be inverted by an attacker. For example, if x is
secret, and y is defined by an instruction that adds 5 to x, leakage of y enables an
attacker to derive x by subtracting 5 from the leaked value. As a result, y should
be considered secret.

Similarly, indirect flows should be taken into account, since registers defined by
an instruction that is control-depedent on a branch may leak information about the
value of the branch condition. For example, if x gets value 5 only when a secret-
dependent branch is taken, leakage of x enables an attacker to determine whether
this secret-dependent branch was taken, hence the attacker learns something about
a secret value. Unfortunately, considering taint flow through all indirect flows has
undesirable consequences, as is illustrated by the following example.
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Example 20. Consider the program in Figure 5.13a, and suppose that the
branch at l1 is secret-dependent. This branch needs to be linearized using an
activating branch, resulting in activating region [l1, l4]. Within this region is a
loop with a latch and exiting branch at l3.

Simply replacing the branch at l1 with an activating branch results in the
insecure program in Figure 5.13b. If the activating region is executed normally,
i will be decremented five times before exiting the loop. However, if the acti-
vating region is mimicked, the instruction at l2 will always be mimicked, hence
i is never decremented and the program does not terminate. An attacker can
observe this, since we assume control flow leaks on side channels. Note that our
current formalization does not state whether this program is secure, nor if it is
correct, since we only define when a terminating region is secure or correct.

To avoid such leakage through control flow, there are two options. First,
suppose that we took all indirect flows into account. In this case, i would be
control-dependent on the secret-dependent branch at l1, since its value depends
on whether this branch is taken. Consequently, the loop latch at l3 would be con-
sidered secret-dependent, but linearizing this branch as shown in Figure 5.13c is
incorrect, since its target l2 does not post-dominate l3, and hence the activating
region is not well-behaved.

Second, suppose that we do not consider i to be secret, but instead we make
sure that the branch condition of the latch at l3 is computed persistently, as
illustrated in Figure 5.13d. We now know that the activating region will termi-
nate regardless of whether mimicry mode is activated, since i is decremented in
both modes of execution. Furthermore, the same amount of iterations is exe-
cuted in both mimicry mode and standard execution mode. Even if i is leaked to
an attacker each iteration, the attacker is unable to determine whether mimicry
mode is active, hence the secret c is not leaked.

Any instruction within an activating region that affects the condition of a persis-
tent branch or the memory address of a load or store operation should be executed
persistently, to ensure that the region is secure. However, if part of this compu-
tation takes place in another activating region that precedes this persistent branch
or memory operation, the correctness of that region will be broken. The following
example illustrates why we need to take indirect flows into account during taint
analysis.

Example 21. Suppose that a (persistent) branch is data-dependent on some
register x, and x is computed within an activating region, as illustrated in
Figure 5.14b. If we would not take indirect flows into account, x would not be
considered secret and the branch remains persistent. Therefore, we must ensure
that x (i.e. the condition of this branch) is computed persistently, resulting in
the persistent instruction at l2. However, this persistent instruction breaks the
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l0 : add i, 0, 5
l1 : beqz c, l4

l2 : add i, i,−1

l3 : bnez i, l2

l4 :

(a) Original CFG

l0 : add i, 0, 5
l1 : a.beqz c, l4

l2 : add i, i,−1

l3 : bnez i, l2

l4 :

(b) Insecure linearized CFG

l0 : add i, 0, 5
l1 : a.beqz c, l4

l2 : add i, i,−1

l3 : a.bnez i, l2

l4 :

(c) Incorrect linearized CFG

l0 : add i, 0, 5
l1 : a.beqz c, l4

l2 : p.add i, i,−1

l3 : bnez i, l2

l4 :

(d) Correct and secure linearized CFG

Figure 5.13: Example program with a loop that is control dependent on a secret-
dependent branch.

correctness of the region [l1, l3], since x outlives this region.
Suppose that we would not compute x persistently in order to avoid breaking

the correctness of this region, as shown in Figure 5.14c. In this case, the
program is insecure, because the branch at l3 leaks x, and the value stored in x
leaks whether the instruction at l2 was executed. Consequently, we leak whether
mimicry mode was enabled, which leaks information about the secret stored in
c.

When taking indirect flows into account, x is control-dependent on the
secret-dependent branch at l1, hence it is considered secret. This implies that the
persistent branch at l3 is also secret-dependent, in which case it should be elim-
inated and replaced with an activating branch, as illustrated in Figure 5.14d.
As a result, x should not be computed persistently and the correctness of the
first region is not broken.
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l0 : add x, 0, 5
l1 : beqz c, l3

l2 : add x, x, 2

l3 : beqz x, ll

(a) Original CFG

l0 : add x, 0, 5
l1 : a.beqz c, l3

l2 : p.add x, x, 2

l3 : beqz x, ll

(b) Incorrect linearized CFG

l0 : add x, 0, 5
l1 : a.beqz c, l3

l2 : add x, x, 2

l3 : beqz x, ll

(c) Insecure linearized CFG

l0 : add x, 0, 5
l1 : a.beqz c, l3

l2 : add x, x, 2

l3 : a.beqz x, ll

(d) Correct linearized CFG

Figure 5.14: Example of insecure and incorrect program (left) and the corrected
program (right)

To conclude, these examples illustrate that indirect flows are not trivial to han-
dle. On the one hand, Example 20 illustrates that not all indirect flows should be
considered during taint analysis as this limits the amount of programs that can be
linearized, since secret-dependent loop latches are not allowed. On the other hand,
Example 21 illustrates that indirect flows must be considered for register that outlive
an activating region, in order to not miss secret-dependent branches and memory
accesses. To solve this problem, we only propagate indirect flows for registers that
outlive an activating region. For example, in Figure 5.14, we consider an implicit
flow from l1 to its immediate post-dominator l3, since x is defined after the branch
at l2, and it is live at l3. However, in Figure 5.13, no implicit flow is considered,
even though i is control-dependent on l1, because it is no longer live at the imme-
diate post-dominator l4. Proving that this approach results in correct and secure
programs is left for future work.
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Chapter 6

Implementation in LLVM

This chapter introduces an extension of LLVM, a compiler framework designed to
support lifelong program analysis and transformation [27], to support control-flow
linearization using AMi [46]. To increase security guarantees, all analyses and trans-
formations are implemented in the compiler backend of the RISC-V target.

A brief overview of LLVM is given in Section 6.1, in which the different stages
of the compilation pipeline are described. Section 6.2 explains how the RISC-V
AMi target can be described in the backend. Section 6.3 describes the program
annotations used to annotate secret data in the source program, and the assumptions
formulated about the high-level type system. The propagation of these program
annotations to the compiler backend is explained in Section 6.4. In Section 6.5, we
give an overview of the hardening passes we implemented in the backend. We use
static taint analysis to track the flow of secret data within a single function based
on the annotations. This is explained in Section 6.6. Finally, we describe how we
implemented control-flow linearization in Section 6.7.

6.1 LLVM Overview
The core of LLVM provides a target-independent code optimizer, a collection of
compiler passes that analyze and transform an intermediate code representation
(IR). This representation is in SSA form, which means that each virtual register is
written exactly once, and each register use is dominated by its definition [27]. This
stage of the compilation pipeline is sometimes referred to as the middle-end since it
is positioned between the frontend and the backend. The frontend parses code and
emits IR. Different programming languages each have their own compiler frontend,
such as clang for C and C++, and rustc for Rust.

In addition, LLVM offers code generation support for numerous CPU archi-
tectures. These components are often called backends, which transform target-
independent IR into target-specific machine code. Optimizations are implemented
in the middle-end (all targets can benefit), backends convert IR to machine code.
The backends make use of a different intermediate representation called Machine
IR (MIR), which can contain target-specific instructions. Middle-end IR is lowered
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into MIR by constructing a directed acyclic graph called the SelectionDAG, which
describes the dependencies between instructions while they are gradually replaced
with target-specific instructions in a process called legalization.

It is common to implement hardening passes in the middle-end [12, 48]. Some op-
timizations are implemented in the backend, since they might rely on target-specific
features, or because they cannot be expressed as an SSA-based optimization. Unfor-
tunately, optimizations may break security properties of hardened code, for example,
by introducing secret-dependent branches, which may result in the manifestation of
a timing side channel, as noted by Simon et al. [42]. For this reason, the transfor-
mations described in this thesis are implemented in the backend of RISC-V.

6.2 Architectural Mimicry Target Description
To minimize the need for extensive target-specific C++ code, LLVM employs a
domain-specific language known as TableGen. This domain-specific language the
ISA, instructions and registers specific to a given target architecture. The compiler
backends can generate substantial portions of code from this description.

The description of the AMi instructions is implemented by Winderix et al. [46]
in the RISCVInstrInfoXAMi.td TableGen file, but we have extended this file to
support more AMi instructions. Additionally, we describe the different classes of
AMi instructions, such as Mimicable, Activating and AlwaysPersistent in this
file. Furthermore, QualifiedInstr tables are generated to map instructions to their
AMi-qualified variants.

We implemented additional target description in the RISCVInstrInfo C++
class. First, we implement a method that describes the transfer of variables marked
as secret through an instruction, which is used by taint analysis. Second, we provide
a method that returns the operands of an instruction that leak on side channels,
such as the operands of a branch instruction and the address used by memory op-
erations. This method describes the leakage model, and can be seen as a form of
hardware/software contract [19] embedded in the LLVM compiler.

6.3 Program Annotations and Type System
Assumptions

Due to the impact of linearization on running time [46, 48, 12], it is essential to
limit the number of linearized branches. Therefore, we allow the programmer to
add annotations to the source program. In this thesis, function arguments, return
values and global variables can be annotated. An example of such annotations is
given in Listing 6.1.
#d e f i n e _secret_ [ [ c lang : : annotate_type ( " s e c r e t " ) ] ]

s t a t i c v o l a t i l e i n t _secret_ va lues [ 2 5 6 ] ;

i n t _secret_ c h a l l e n g e ( i n t _secret_ p , i n t i , i n t _secret_ a ) {
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// Star t o f s e c r e t −dependent branch reg i on
i f (p > 0) {

va lue s [ i ] = 42 + a ;
}

re turn a ;
}

i n t _secret_ ∗ cha l l enge2 ( i n t _secret_ ∗ p1 , i n t ∗ _secret_ p2 ) {
// [ . . ]

}

Listing 6.1: Example of program annotations

Note the difference between int _secret_ * and int * _secret_, the former
describes a pointer to a secret integer and the latter describes a secret pointer to a
public integer.

This thesis assumes that the annotated source program adheres to a certain
notion of well-typedness. Existing research has investigated such type systems, in
which a “trusted” is a subtype of “untrusted”, or similarly “secret” is a subtype of
“public”. Additionally, such type system may enable explicit coercion of a public type
into a secret type [34, 45]. In this thesis, we aim to support such coercion through
type casts. While these casts are currently not implemented, explicit type coercion
is also supported by returning from functions. For example, if a function with a
public return value in its signature returns a secret, said secret will be declassified
and becomes a public value.

Consider the following function signature.
i n t _secret_ c h a l l e n g e ( i n t _secret_ a , i n t _secret_ ∗ p) ;

This function may be called with a secret value as first argument, but due to
subtyping, a public value may also be used. Furthermore, a pointer to a secret
integer is passed as second argument. It is not secure to pass a pointer to a public
value. This is because pointer types can be seen as output parameters, in which this
subtyping relation is contravariant. Indeed, the implementation may assume that
this argument points to a secret value, hence it is valid to store another secret value
at this location. If a pointer to a public value would be passed to this function, the
secret value would leak to a public memory location, breaking the security of the
program.

On the other hand, it is also not allowed to pass a pointer to a secret value to
a function that expects a pointer to a public value, because a pointer can also be
used as an input, in which case the subtyping is covariant. Hence, we cannot allow
subtyping on pointer types, unless additional annotations are added to specify if a
pointer can be used for input or output.

These typing rules are not checked, and this thesis assumes that any IR emitted
by the frontend is well-typed according to the security type system. There exist
implementations of extended type systems for taint analysis in clang, the LLVM
compiler frontend for C/C++, such as Quala [41].

62



6.4. Propagation of Annotations

6.4 Propagation of Annotations
Since the linearization passes are implemented in the backend, the annotations must
propagate to the compiler backend, to determine secret-dependent branches.

Lowering from C to IR Source level annotations are lowered to LLVM IR,
requiring minor modifications to clang. Specifically, CGCall and CodeGenModule
are changed to emit an IR attribute for each function argument, return value and
global variable.

Lowering from IR to MIR To lower IR to the intermediate representation of
the backend known as Machine IR or MIR, a SelectionDAG is constructed as an
intermediate step. A SelectionDAG is a directed acyclic graph (DAG) where each
node represents a certain operation on variables, such as an addition, and each edge
represents a dependency between operations. Leaf nodes contain operations that
copy values from input registers, according to the calling convention. Root nodes
can be references to other basic blocks that use certain values, return nodes or
operations with side effects, such as store operations. Between leaf and root nodes
are operations that describe how to compute the root values from the leaf nodes.

Selection patterns are applied to lower generic DAG nodes into target-specific
nodes that represent target-specific instructions. After several transformation passes
on the SelectionDAG, Machine IR instructions are emitted, a process called instruc-
tion selection. During instruction selection, function parameters are lowered accord-
ing to the calling convention, by copying to and from registers and stack slots. As a
consequence, information about which function argument is stored in which register
or stack slot is no longer available after instruction selection, making it difficult to
infer secrecy annotations in MIR code.

This thesis solves this by lowering annotations on function parameters to custom
SelectionDAG, by inserting a custom node between the operations that result from
lowering the calling convention and the remainder of the DAG. These custom DAG
nodes are then lowered into MIR pseudo-instructions, and the input variable is
mapped to the output variable. This approach is that it is independent of the
calling convention.

6.5 Hardening Pipeline
Figure 6.1 gives an overview of the backend passes that implement AMi lineariza-
tion. The hardening pipeline can be divided in two stages. In the first stage, analysis
passes run to determine the register allocation constraints needed to ensure that the
linearized program will be correct. In the second stage, after register allocation,
the same analysis passes run once again to determine how to apply the lineariza-
tion. These results are then applied by changing branch terminators as described in
Section 5.3.
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Analysis

Regalloc Constraints

Register Allocation

Analysis

Linearization

Track Secrets

Linearization Analysis

Persistency Analysis

Figure 6.1: Overview of backend passes used to implement AMi linearization
in LLVM. Solid borders represent a single pass, while dashed borders are used to
represent a collection of passes.

The analysis passes include a taint analysis pass called “Track Secrets”, a “Per-
sistency Analysis“ pass that determines which instructions need to be executed
persistently to reach the security objective, and a “Linearization Analysis“ which
implements the methods described in Section 5.2 to determine the sets of acti-
vating edges and ghost edges. The “Linearization Analysis” pass implements two
linearization methods. The “SESE” variant implements both method 1 and method
2 described in Section 5.2, since applying method 2 to triangle-structured control
flow yields the same results as method 1. The third method is implemented by the
“PCFL” variant.

6.6 Static Taint Analysis
To identify secret-dependent branches, static taint analysis tracks the flow of se-
crets from annotated function arguments and return values to branch instruction
operands. Data-flow equations are set up for each instruction, and those can be
solved by repeatedly calculating the secrecy of the defs of an instruction given the
secrecy of the uses. This method is also known as Kildall’s method [23]. This is
described in Algorithm 2, which we have implemented in the compiler backend.
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Algorithm 2: Static taint analysis algorithm used to propagate secrecy
input : S, list of secrets
output: B, list of secret-dependent branches
while S 6= ∅ do

i← pop(S);
foreach u ∈ uses(i) do

if u is a branch instruction then
add u to B

end
foreach d ∈ transfer(u) do

add d to S
end

end
end

The transfer function mentioned in Section 6.2 returns the list of secret registers
defined by the instruction that uses a certain secret operand. For most instructions,
these are all defined registers, given that one of the operands is secret. However,
memory operations behave differently. For example, a load instruction that uses an
address register with secrecy label “pointer to secret value” will cause the defined
register to be labeled as a “secret value”. If this address operand would be a secret
value itself, the code is rejected, as this would result in a secret-dependent memory
access.

6.7 Control Flow Linearization
In this thesis, control-flow linearization is applied to secret-dependent branches to
remove leakage of secrets through control flow. Section 6.7.1 explains how exist-
ing infrastructure can be used to structurize IR code. Section 6.7.2 describes how
linearization can be applied using AMi. Finally, Section 6.7.3 describes how we im-
plemented a method based on the approaches presented by Borrello et al. [12] and
Wu et al. [48], used to compare its performance against the implementation that
makes use of AMi.

6.7.1 Structurization and Analysis

Control Flow Structurization To facilitate the linearization of secret-dependent
branches, some approaches require code to be structurized, such as the first two
methods described in Section 5.2 and the work of Borrello et al. [12] and Wu et
al. [48]. LLVM provides the StructurizeCFG pass 1, which structurizes a CFG to
triangle-structured control flow. Although this pass was written with SIMD op-

1https://llvm.org/doxygen/StructurizeCFG_8cpp.html

65

https://llvm.org/doxygen/StructurizeCFG_8cpp.html


6.7. Control Flow Linearization

timizations in mind, it has also been used by linearization methods that mitigate
against side-channel leakage, such as the work of Borrello et al. [12].

Unfortunately, it is not always desirable to structurize to a triangle-structured
CFG, since this could impact the performance and register pressure of the linearized
CFG. For methods that only require structured control flow, Borrello et al. [12]
implemented a BranchEnhance pass, which tries to undo some structurizations,
resulting in structured control flow that is not necessarily triangle-structured. In this
thesis, we make use of these passes in case the chosen linearization method requires
(triangle-)structured control flow. For the linearization method that only requires
reducible control flow, we make use of built-in LLVM passes, such as FixIrreducible
2 and LoopSimplify 3. These passes remove irreducible control flow and transform
loops to a canonical form respectively.

SESE Region Analysis The goal of this compiler pass is to identify structured
secret-dependent branches, along with their SESE regions by building a program
structure tree [22]. We implement a pass similar to the RegionInfo 4 pass of LLVM,
but out pass only constructs the regions that follow a secret-dependent branch, and
we assume that all regions of a branch have the immediate post-dominator of the
branch as exit.

6.7.2 Architectural Mimicry

After taint analysis, the AMi linearization analysis pass determines how the program
should be linearized by identifying all edges that must become activating edges, and
the set of ghost edges that should be added to the CFG. Based on this information,
the activating regions of the program can be determined. Subsequently, the per-
sistency analysis determines which instructions within each activating region need
to be made persistent to ensure that the resulting program is secure. The next
pass creates additional register allocation constraints to ensure that the activating
regions of the resulting program will be correct, after which register allocation takes
place. After registers have been allocated, the results of the linearization analysis
are used to apply the linearization to the program, resulting in a secure and correct
program.

AMi Linearization Analysis

As explained in Section 5.2, a linearization of a CFG can be found by replacing
control-flow edges with activating edges, and by introducing ghost edges. The AMi
Linearization Analysis pass analyzes the CFG and determines which edges should
become activating edges, and which ghost edges need to be added. This pass consists
of two different implementations. The “SESE” implementation makes use of the re-
sults of the SESE region analysis to find the exiting blocks of one branch region, and

2https://llvm.org/doxygen/FixIrreducible_8cpp.html
3https://llvm.org/doxygen/classllvm_1_1LoopSimplifyPass.html
4https://llvm.org/doxygen/classllvm_1_1RegionInfoBase.html
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create ghost edges to the next branch region, as explained in Section 5.2.2. PCFL
as described in Algorithm 1 from method 3 (Section 5.2.3) is implemented as the
“PCFL” implementation of this pass. This method requires a compact topological
ordering, hence we implemented a CompactOrder pass based on the code of Soares
et al. [43].

Region Security: Persistency Analysis

As explained in Section 5.5, each instruction that affects the condition of a persistent
branch or the memory address of a load or store operation must be executed per-
sistently. To find this set of instructions, backwards dataflow analysis through the
def-use chains can be used starting from instructions that leak one of their operands.
Such static dataflow analysis is similar to the taint analysis described in section 6.6.
Algorithm 3 runs for each activating region and returns a set of instructions that
should be executed persistently. The constantTimeLeakage function determines
which operands are leaked by the given instruction, as defined by the constant-time
leakage model.

Algorithm 3: Persistency analysis algorithm
input : R, set of instructions part of an activating region
output: P , set of instructions that should be executed persistently
foreach i ∈ R do

Ops← constantTimeLeakage(i);
foreach o ∈ Ops do

S ← {o};
while S 6= ∅ do

o← pop(S);
foreach d ∈ defs(o) do

// d is an instruction that defines operand o
add d to P ;
foreach u ∈ uses(i) do

// u is an operand used by i
add u to S;

end
end

end
end

end

Region Correctness: Register Allocation Constraints

The linearization passes can also be used to identify activating regions without
applying the changes to the CFG. As described in Section 5.4.3, every variable that
is live on an activating edge conflicts with every variable defined by a persistent
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instruction or a ghost instruction within the activating region of that edge. These
constraints are added to the original CFG, since the original CFG more closely
resembles the behavior of the resulting program, as opposed to the linearized CFG,
which better describes the microarchitectural behavior of the program. Furthermore,
it is currently not feasible to describe the linearized program in SSA form, therefore
we apply the linearization after register allocation.

We constrain register allocation based on the results of the linearization pass,
to ensure that the activating regions will be correct in the resulting program, as
defined in Section 5.4.2. Our implementation in LLVM constrains register allocation
by creating a new block at each activating edge. In this block, pseudo-instructions
are inserted for each register that is defined by a persistent instruction or a ghost
instruction in the activating region of this activating edge, which defines the same
registers as that instruction. Another pseudo-instruction is inserted that uses the
same registers, to ensure that those definitions are not considered dead. For each of
these pseudo-instructions a new segment is added to the live interval of the defined
register, which overlaps with the interval of variables that are live on the activating
edge. This way, additional constraints are added to the interference graph.

Example 22. An example of constrained register allocation is given in Fig-
ure 6.2. We assume that linearization analysis has determined that l0 → l4
and l3 → l6 will become activating edges in the linearized CFG, along with
their respective activating regions [l0, l4] and [l3, l6] . Moreover, we assume
that persistency analysis has determined which instructions need to be com-
puted persistently, and marked them with qualifier p as shown in Figure 6.2a.
Next, two temporary basic blocks are created on edges l0 → l4 and l3 → l6,
as illustrated in Figure 6.2b. These blocks contain instructions that define the
registers that are defined persistently in the matching activating region.

Then register allocation takes place, resulting in Figure 6.2c. Physical reg-
ister a is assigned to most virtual registers, but it cannot be assigned to both
v3 and v2, since both are live at the temporary block that defines v3. Hence,
a different free physical register b is assigned to v3. This ensures that in the
linearized form shown in Figure 6.2d, the persistent instruction at location l3
does not overwrite live register a. However, the standard instruction at loca-
tion l4 can overwrite a, since it will be mimicked if a is live at l4. This way,
careful constraining of the register allocation can significantly reduce the impact
on register pressure, since the allocation is based on the liveness analysis of the
original CFG instead of the linearized CFG.

Furthermore, this compiler pass applies the ghost load pattern shown in Fig-
ure 5.10 by inserting pseudo-instructions that define a new virtual register and use
the value that was originally stored. The stored virtual register in the store op-
eration is replaced with this newly defined virtual register. We also modified the
register spilling code of the register allocator such that ghost loads are emitted for
register spills, and additional constraints are added for these ghost loads.
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l0 : beqz c, l4

l1 : p.add v1, 0, 5
l2 : s.add v2, 0, 3
l3 : jmp c, l6

l4 : p.add v3, 0, 10
l5 : s.add v4, 0, 4

l6 : phi x, v2, v4

l7 : ret

(a) Example CFG before register allocation
where some instructions are marked as per-
sistent

l0 : a.beqz c, l4

l1 : p.add v1, 0, 5
l2 : s.add v2, 0, 3
l3 : a.jmp c, l6

ln : def v1

l4 : p.add v3, 0, 10
l5 : s.add v4, 0, 4

lm : def v3

l6 : phi x, v2, v4

l7 : ret

(b) After adding additional blocks to constrain
register allocation

l0 : a.beqz c, l4

l1 : p.add a, 0, 5
l2 : s.add a, 0, 3
l3 : a.jmp c, l6

ln : def a

l4 : p.add b, 0, 10
l5 : s.add a, 0, 4

lm : def b

l6 : add x, a, 0
l7 : ret

(c) After register allocation

l0 : a.beqz c, l4

l1 : p.add a, 0, 5
l2 : s.add a, 0, 3
l3 : a.jmp c, l6

l4 : p.add b, 0, 10
l5 : s.add a, 0, 4

l6 : add x, a, 0
l7 : ret

(d) After linearization

Figure 6.2: Example of constrained register allocation
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AMi Linearization

After having determined how the CFG needs to be linearized, which instructions
need to be made persistent to ensure the regions are secure, and the register allo-
cation has been constrained appropriately such that the activating regions of the
linearized CFG will be correct, this linearization pass replaces certain instructions
with one of their AMi-qualified counterparts.

On the one hand, the results from the persistency analysis are applied by mak-
ing instructions persistent. On the other hand, we rewrite branch terminators as
described in Section 5.3. The target description described in Section 6.2 is used
to find qualified variants of instructions. Specifically, the table generated from
the QualifiedInstr records (as described in Section 6.2) is used to determine the
mimic, persistent, ghost or activating counterpart of a given instruction.

Furthermore, this pass changes the successors of basic blocks accordingly. Even
though activating edges should not be considered as part of the CFG, this pass does
add activating edges to the CFG, due to technical limitations of the instruction
emitter. Program labels are only emitted for a basic block if there is some predecessor
block that does not fall through to this block. As a result, labels for activating
instruction targets would not be emitted, unless activating edges are included in the
CFG.

6.7.3 Conditional Execution

In addition to the linearization methods that make use of AMi, we provide an imple-
mentation of the linearization methods based on conditional execution introduced
by [48] and [12]. The existing implementations are written as middle-end passes,
and are designed for an architecture such as X86 that provides conditional move
instructions. When using these implementations on the RISC-V architecture used
in this thesis, which does not provide conditional move instructions, such condi-
tional selection would be lowered to branches, resulting in leakage. The methods
proposed by Simon et al. [42] could be adapted to implement a constant time selec-
tion primitive that is lowered to branchless RISC-V code. However, in this thesis,
the linearization is implemented in the backend, and conditional selection is lowered
immediately into branchless code.

Taken Predicate In this implementation, we make use of a “taken” predicate,
which is stored in a fixed memory location. This predicate is updated throughout
the function at every control flow decision of a secret-dependent branch. We assume
that 32-bit integers are used, represented in two’s complement (e.g. the integer −1
is represented as 0xffffffff), and the taken predicate is represented as a mask that
can take value 0x00000000 or 0xffffffff.

Each ϕ-node at the immediate post-dominator of a secret-dependent branch is
replaced with a constant-time conditional selection that chooses one of the operands
based on this taken predicate. To improve performance, this predicate is loaded into
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a register on function entry, and stored to its global memory location before each
function call.

Materializing Branch Conditions Secret-dependent branches are eliminated
and replaced by an assignment to the taken variable. First, the branch condition is
materialized. For example, bge x1, x2, l (branch if x1 is greater than x2) is replaced
with slt c1, x1, x2 (set c1 if x1 less than x2) and xori c, c1, 1 (exclusive or of c1 and
the value 1, inverting the boolean value in c1). Second, the boolean value c ∈ {0, 1}
is converted to a mask cm ∈ {0x00000000, 0xffffffff} with sub cm, 0, c. Then, we
update the taken mask t by setting it only if it was already set, and the branch
condition is true, e.g. and t, t, cm.

Constant Time Conditional Selection Regions of secret-dependent branches
are placed in a linear sequence, and ϕ-nodes are replaced with constant-time selec-
tion. Constant-time selection ctsel x, x1, x2, t is lowered to the following code:

l0 : xori t′, t,−1
l1 : and v1, t, x1

l2 : and v2, t′, x2

l3 : or x, v1, v2

First, we invert the incoming taken mask t using an exclusive or with −1, flipping
all bits in the mask since −1 = 0xffffffff, and storing the result in t′. Next, we apply
mask t to the first incoming value x1, and apply the inverted mask to the second
incoming value x2, storing the result in v1 and v2 respectively. That way, either v1
or v2 contains the respective incoming value, whiles the other contains 0, since either
mask t or its inverse t′ will be 0. As a result, applying an “or” operation on v1 and
v2 will store one of the incoming values to x, depending on the incoming mask t.

Store Instructions A store instruction in the linearized program should only be
executed conditionally. We implemented the method described by [48], where we
conditionally select between the value that is already stored and the new value that
would be stored. This is similar to a ghost load in AMi, but it is predicated by the
taken predicate. For example, a store operation of x to location v (store x, v) is
replaced with the following, where we assume ctsel can be lowered as described in
the previous section:

l0 : load y, v

l1 : ctsel z, x, y, t

l2 : store z, v
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Evaluation

In this chapter, we evaluate the execution time and code size overhead of auto-
matically linearized programs using the different methods described in this thesis
through the following research questions:

RQ1: Are the automated linearization methods implemented in this thesis cor-
rect and secure?

RQ2: What is the performance of our linearization techniques in terms of code
size and execution time overhead?

RQ3: How do our methods compare against each other?
RQ4: How do our methods compare against manually linearized code?
RQ5: How do our methods compare against linearization methods of related

work?

Methodology A benchmark of C programs with annotated secrets are compiled
without linearization to provide a baseline. The same programs are then structurized
by applying LLVM middle-end passes as described in section 6.7.1, resulting in
three versions of the original program in LLVM IR: (1) a reducible program, (2)
a structured program and (3) a triangle-structured program. Then the different
linearization methods are applied, starting from a sufficiently structured IR program,
depending on the requirements of each method. This results in three programs in
RISC-V assembly: (1) PCFL applied to reducible IR, and the linearization method
for structured control flow applied to (2) structured IR and (3) triangle-structured
IR. The resulting programs are executed on the in-order pipeline of Proteus [11],
an extendable RISC-V core implemented in SpinalHDL, with an implementation of
AMi by [46] as a plugin.

Evaluation A modified version of the evaluation setup from [46] is used to validate
the correctness and security of the program (RQ1). The correctness is validated
by comparing the values of registers at fixed locations in the program with the
expected values, by analyzing waveform files that represent both the architectural
and microarchitectural state of the processor. The security is validated by comparing
the trace of the program counter for different instantiations of secret inputs.
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To evaluate the execution time and size overhead (RQ2), we compare the amount
of cycles needed to finish execution of the linearized programs with the baseline pro-
gram. To answer our remaining research questions, we evaluate all three linearization
methods that make use of AMi (RQ3), the manually hardened code of Winderix et
al. [46] (RQ4), and our implementation of linearization using conditional execution
(RQ5).

Benchmarks The benchmark suite used for the evaluation consists of synthetic
programs that feature a variety of control flow patterns and have different levels of
structurization to evaluate the potential benefits of different linearization methods.
This suite includes the benchmarks used by [46], to compare the performance of the
compiler-assisted linearization with their manual hardening efforts.

Experimental Setup The experiments are conducted on a desktop running Fe-
dora 38, where our modified version of LLVM 16 is used to compile and linearize
programs. The programs are then linked using version 12.2.0 of the GCC RISC-V
toolchain, and executed on Proteus with the AMi implementation provided by [46].

7.1 RQ1: Security and Correctness
All the benchmarks evaluated presented in this chapter pass our security and cor-
rectness evaluation. However, we have identified some cases where correctness or
security may be broken by our linearization methods. For example, linearized pro-
grams where the stack counter is incremented persistently, but not decremented
accordingly in mimicry mode due to limitations of our persistency analysis may be
incorrect.

7.2 RQ2: Performance Results
The code size overhead for different linearization methods is given in Table 7.1, along
with the results of the manual linearization by Winderix et al. [46]. We find a mean
overhead ranging between 5% and 10% relative to the original program, depending
on the used linearization method. The execution times of the benchmarks are given
in Table 7.2. We find a mean overhead ranging between 25% and 28% depending
on the linearization method.

7.3 RQ3: Comparison of Our Methods
Most of the examples used by [46] are already triangle-structured, or can be struc-
turized without little to no size overhead. As a result, the different linearization
methods yield very similar code sizes and execution times.

When trying benchmarks of non-structured, but reducible control flow, differ-
ences in code size for different linearization methods become apparent. We find that
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Benchmark Original Manual Compiler Linearized
Baseline SESE Triangle Molnar AMi Molnar PCFL SESE Triangle

triangle 136 1.00 1.00 1.15 1.00 1.26 1.00 1.00 1.00
ifthenloop 204 1.00 1.00 1.20 1.00 1.51 1.04 1.06 1.06
modexp2 308 1.00 1.00 1.16 1.06 1.10 1.00 1.00 1.00

mulmod16 264 1.00 1.08 1.23 1.03 1.17 1.03 1.03 1.06
keypad 504 1.00 1.00 1.02 0.94 1.47 1.03 1.03 1.03

bsl 368 1.00 1.00 1.00 0.92 1.09 1.00 1.00 1.00
fork 136 1.00 1.00 1.15 1.00 1.26 1.00 1.00 1.00

reducible 244 1.00 1.03 - - 1.97 1.13 1.13 1.16
largecfg 484 1.13 1.34 - - 3.20 1.25 1.34 1.54

highpressure 784 1.00 1.07 - - 1.54 1.01 1.01 1.07
indirectflow 196 1.00 1.00 - - 1.43 1.04 1.04 1.04

mean - 1.01 1.05 1.13 0.99 1.55 1.05 1.06 1.09

Table 7.1: Size overhead of structurization and linearization. The baseline size is
given in bytes, other values are relative to the baseline. “Triangle” and “SESE” refer
to (linearization of) triangle-structured (method 1) and structured code (method 2)
respectively, and “PCFL” refers to method 3.

Benchmark Original Manual Compiler Linearized
Baseline SESE Triangle Molnar AMi Molnar PCFL SESE Triangle

triangle 86 1.00 1.00 1.07 0.95 1.27 0.95 0.95 0.95
ifthenloop 204 1.00 1.00 1.50 1.38 2.09 1.47 1.48 1.48
modexp2 12256 1.00 1.00 1.84 1.75 1.78 1.72 1.72 1.72

mulmod16 322 1.00 1.11 1.44 1.28 1.37 1.34 1.19 1.20
keypad 4708 1.00 1.00 1.59 1.18 2.22 1.57 1.57 1.57

bsl 1982 1.00 1.00 1.16 0.86 1.03 1.00 1.00 1.00
fork 86 1.00 1.00 1.07 0.95 1.27 0.95 0.95 0.95

reducible 231 1.00 1.04 - - 2.03 1.22 1.22 1.26
largecfg 633 1.20 1.39 - - 2.99 1.57 1.69 1.85

highpressure 1280 0.97 1.04 - - 1.45 1.00 0.98 1.05
indirectflow 174 1.00 1.00 - - 1.49 1.01 1.01 1.01

mean - 1.02 1.05 1.38 1.19 1.73 1.26 1.25 1.28

Table 7.2: Execution time overhead of structurization and linearization. The base-
line is given in number of cycles, other values are relative to the baseline. “Triangle”
and “SESE” refer to (linearization of) triangle-structured (method 1) and structured
code (method 2) respectively, and “PCFL” refers to method 3.

an increased size due to structurization is reflected in the resulting program when
linearizing a (triangle-)structured program with a similar increase. Hence, being
able to apply PCFL to reducible control flow graphs is useful to reduce code size
overhead, as additional branches and predicate variables resulting from structuriza-
tion are avoided.

The largecfg benchmark contains a variety of branches, but not all depend on
secrets. Some of those branches result in non-structured control flow, hence struc-
turization results in significant running time and code size overhead. For such bench-
marks, our PCFL method results in programs with lower execution time than meth-
ods that require structured control flow, because reducible parts of the program that
don’t depend on secrets are left as in the original program, and only the branches
that depend on secrets are linearized.

For certain benchmarks, such as mulmod16, the PCFL method performs worse
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than the linearization of structured control flow. However, the original program
is already structured, as reflected by there being no overhead on the SESE struc-
tured version. In this case, one would expect PCFL to produce the same linearized
program as the other method. The disparity in execution time can be attributed
to variances in the successor that is chosen for a secret-dependent branch during
linearization, combined with suboptimal block placement heuristics. This could be
rectified by adapting block placement to take the compact topological ordering into
account. Such improvements are considered future work.

7.4 RQ4: Comparison with Manual Linearization
The manual efforts of Winderix et al. [46] do not add any code size overhead,
in contrast to our automatic linearization. One reason for this discrepancy is the
presence of redundant move instructions that result from applying the pattern in
Figure 5.10. Another reason is that we do not support inlining annotated functions,
which explains the difference in the keypad example. Moreover, when hardening
manually, the programmer can perform additional optimizations. For example, when
incrementing a global variable, one can avoid adding a ghost load and use a persistent
load instead, since the stored value must also be loaded in standard execution mode.

Furthermore, we find a similar difference in execution time overhead. This is to
be expected considering that the code size of the automatically linearized code is
higher, and in a linearized program, all instructions will be executed (assuming all
branches are linearized) to ensure an attacker cannot distinguish different executions
that have different secret inputs.

7.5 RQ5: Comparison with Related Work
When automatically linearizing benchmark programs using our implementation based
on the methods of Molnar et al. [33], Borrello et al. [12] and Wu et al. [48], we
find a mean code size overhead of 55% and a mean execution time overhead of 73%.
This is significantly higher than the overhead of linearization using AMi.

The size and execution time overhead when automatically applying the method
of Molnar et al. [33] differs from the overhead when done manually by Winderix et
al. [46]. This can be explained by small differences in the methods used by [46], and
the methods used in this thesis based on [12] and [48]. Moreover, when manually
linearizing code, some assumptions can be made about functions and the context
in which they are called. That way, unnecessary store and load operations for the
taken predicate can be avoided.
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Conclusion

This thesis implements automatic linearization passes in the LLVM compiler making
use of the AMi ISA. The main contributions of this thesis can be summarized as fol-
lows. We extended the programming model for linearization proposed by Winderix
et al. [46], and propose an algorithm based on PCFL to automatically linearize re-
ducible control flow. These methods are implemented in the backend of the LLVM
compiler, along with an implementation of static taint analysis. Section 8.1 discusses
the main results of this thesis and its limitations, and avenues for future work are
explored in Section 8.2.

8.1 Discussion and Limitations

8.1.1 Secret-Dependent Loops

Similar to most related work, one of the main limitations of this thesis is the lack
of support for secret-dependent loops. If the source program contains a secret-
dependent loop, the program will be rejected. Most methods unroll secret-dependent
loops by finding an upper bound for the amount of iterations using overly conserva-
tive static analysis [48], or may result in programs that do not terminate [43]. The
authors of [12] instead adaptively updates the upper bound of a loop if a program
wishes to iterate more than the current bound in what they call “just-in-time lin-
earization”. However, secret information is still leaked when the loop bound changes.
We propose that additional program annotations could be introduced that enable
the programmer to inform the compiler of an upper bound for a loop. This way
secret-dependent loops can be supported, without resulting in side-channel leakage,
potentially non-terminating programs, or overly conservative loop bounds.

8.1.2 Program Annotations and Taint Analysis

The current implementation for program annotations is very limited, as there is no
support for annotating struct fields. Moreover, the current taint analysis approach
is not field sensitive and unable to track taint through stack slots. As a consequence,
compilation of properly annotated programs may yield a program that leaks secrets
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in certain cases. Currently, the frontend does not check whether calls of functions
with secret arguments are valid. For example, we do not reject programs where a
function that expects a public value is called with a secret. The compiler frontend
should be extended to support such type-checking.

Moreover, a drawback of implementing taint analysis in the compiler backend is
that although secret-dependent memory accesses can be detected, it is difficult to
provide meaningful messages to guide the programmer towards fixing the leakage.
Frontend support would help the programmer resolve such issues.

Lastly, we do not support other LLVM compiler frontends such as the Rust
compiler, as no support for secrecy annotations is implemented. Extension to other
frontends would be an interesting area of future work.

8.1.3 Correctness and Security Guarantees

Although this thesis proves that the linearization methods preserve program seman-
tics (Theorem 1), this only holds under the assumption that the activating regions
are correct (Definition 7). We state concrete approaches to ensure regions are correct
and secure, but do not provide a proof. This may need to be refined to deal with
potential edge cases that this thesis did not yet consider. One example of such edge
case are stack pointer computations. Using persistency analysis, we may conclude
that incrementing the stack pointer to reserve a stack slot must be done persistently
since a store operation that stores to this stack slot is data-dependent on the stack
pointer. If the stack pointer is decremented again within the same activating region,
this should also be done persistently. The correctness proposition states that this
should be the case since the stack pointer is part of the live state, and hence it
should be restored to its original value when mimicking the region. However, the
implementation currently does not guarantee this, resulting in incorrect code.

Furthermore, the current implementation in the compiler backend cannot guar-
antee the correctness and security of the resulting programs since standard compiler
passes run throughout the code generation process. These passes have no knowledge
of the semantics of AMi instructions, or any hardware/software security contract.
Hence, they are prone to break the correctness or security of the program.

8.1.4 Comparison with Conditional Move

Since the RISC-V ISA does not provide conditional move instructions, the imple-
mentation based on [12] and [48] uses a conditional selection primitive that may be
less efficient than a conditional move instruction. Comparing the AMi ISA exten-
sion with a RISC-V ISA extension that provides conditional move instruction may
yield a more fair comparison between our method and state-of-the-art automated
linearization methods.
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8.2 Future Work

8.2.1 Security Type Systems

In section 6.3, we implemented basic support to annotate secrets and make sev-
eral assumptions about typing rules. In future work, this type system could be
extended to support static type-checking of security labels to ensure functions that
expect public inputs are not called with secret values. By implementing a type
checker for these security labels in the compiler frontend, secret-dependent loops
could be detected earlier, and more useful error messages could be provided to the
programmer. Furthermore, security types of local variables could be inferred by the
frontend, instead of relying on user annotations. This information could be propa-
gated to the middle-end and the backend by implementing these security types in
the intermediate representation of the compiler.

8.2.2 AMi Semantics in Compiler Backends

Section 5.4.3 explained how the inability to express the semantics of AMi in com-
piler representations leads to problems regarding register allocation. Although we
proposed a method to constrain register allocation resulting in a valid allocation
of physical registers, there are still a few issues with this approach. On the one
hand, this solution is not idiomatic as it introduces temporary basic blocks with
dummy instructions, and it takes place after ϕ-node elimination, but before register
allocation. Usually, no passes run in this phase, hence register allocators may have
implicit assumptions about the code that is used as input for register allocation.

On the other hand, any passes that run after linearization have no knowledge of
these semantics either. For example, assignments to registers by standard instruc-
tions may be considered dead, hence removing such instructions would be considered
correct by compiler passes, even if it is incorrect under AMi semantics. Although
this could be alleviated by scheduling linearization passes as late as possible, this
creates another problem. If other passes are scheduled between register allocation
and linearization, the control flow of the program can change, in which case the
register allocation constraints may no longer be valid for the resulting program.

These issues would need to be resolved before automatic AMi linearization can
be used in practice. To achieve this, different ways to express the semantics of AMi
in compiler backends can be explored. For example by introducing a notion of con-
ditional liveness, where the liveness of a register defined by a standard instruction is
predicated by the condition of an activating branch. However, it would be preferable
to reduce the impact on existing compiler infrastructure, as it would be undesirable
to rewrite numerous existing compiler passes.

8.2.3 Contract-Aware Code Generation

Based on the idea of Contract-Aware Secure COmpilation (CASCO) [19], a contract-
aware code generator could be written to ensure that an AMi linearized program
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leaks no secrets. Information about the leakage model could be provided by target-
specific descriptions of LLVM backends, similar to the constantTimeLeakage func-
tion that was briefly mentioned in section 6.7.2. This could be extended such that
different hardware/software security contracts can be specified, and backend passes
could be modified such that they satisfy such contracts.

8.2.4 Secure Compilation and Formal Verification

In this thesis, the security and correctness of programs are experimentally evaluated
using a limited set of benchmark programs. In future work, these hardening passes
could be implemented in a formally verified secure compiler such as CompCert [28],
or binary analysis tools such as BinSec [17] could be extended to support programs
with AMi instructions to improve the validation of hardening passes.
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Appendix A

Proofs of Theorems

A.1 Correctness of AMi Linearization
Lemma 1. Let σ1 and σ2 be two live-equivalent configurations for respective pro-
grams P1 and P2. If P1[σ1.pc] = P2[σ′

2.pc], σ1
o1=⇒ σ′

1 and σ2
o2=⇒ σ′

2, then σ′
1 =L σ′

2.

Proof. This follows from the fact that in the transition system in figure 4.2, the
updates to the configuration only depend on the instruction and its used operands
(figure 2.8).

Since the instruction is identical in both cases, and each used operand is live
according to section 2.4.3, we know that these operands will be mapped to the same
values by live-equivalent configurations σ1 and σ2.

Hence, both instructions will have the same effect on the live state of σ1 and σ2,
and the resulting configurations σ′

1 and σ′
2 will also be live-equivalent.

Theorem 1 (Correctness of AMi Linearization). Let P be a program and T an
AMi linearization as defined by Definition 3. Then T is correct if for each activating
region [lx, ly] in T (P ), [lx, ly] is well-behaved (Proposition 2), and [lx+1, ly] is
correct (Definition 7).

Proof. (sketch). We assume that there is a bijection between the locations of P and
the locations of P ′ = T (P ). If there is no such bijection, locations present in T (P )
can be added to P , shifting other locations and changing branch targets accordingly
if necessary. Furthermore, we assume that both P and T (P ) have a single entry l0
and a single exit l1.

Let σ0 be an arbitrary configuration with σ0.pc = l0 and evaluate both programs
in this configuration. We prove by induction on n that after n steps of big-step
evaluation, the resulting configurations σn and σ′

n for P and P ′ respectively are live-
equivalent, that σn.pc = σ′

n.pc (under the aforementioned bijection) and mimicry
mode is disabled in both configurations.

Induction hypothesis: during the n-th induction step with respective config-
urations σn and σ′

n, the following holds:

• σn = σ′
n
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• σn.pc = σ′
n.pc = lk

• [l0, lk]σ ⇓o σn and [l0, lk]σ′ ⇓o′ σ′
n

• σn.AC = σ′
n.AC = 0

Base step: Since we are using the same initial configuration for both P and P ′,
σ0 = σ′

0, hence they are also live-equivalent, and pc = l0 in both cases.
Inductive step: Assume that σn =L σ′

n and let ln = σn.pc = σ′
n.pc. We

consider the following cases:

• If P [ln] = P ′[ln], it follows from lemma 1 that there must be some live-
equivalent configurations σn+1 and σ′

n+1 for which σn
o=⇒ σn+1 and σ′

n
o′
=⇒

σ′
n+1, and through the application of the rules in 4.5, σn ⇓o σn+1 and σ′

n ⇓o′

σ′
n+1.

• If P [ln] 6= P ′[ln], then we consider the following cases based on the definition
of AMi linearization.

– (control flow edge to activating edge) There is some branch or jump
instruction instr at P [ln] such that P ′[ln] = a.instr. Then there must
be some target location l′ such that [ln, l′] is a well-behaved activating
region of P ′. From the semantics of AMi shown in figures 4.3 and 4.4, we
know that σ′

n
o′
=⇒ σ′′

n such that σ′
n =L σ′′

n and σ′′
n.pc = ln+1.

If AC was incremented at ln, there is some σ′
n+1 for which σ′

n =L σ′
n+1 and

σn+1.pc = l′, since [ln+1, l′] is correct (def. 7). In that case, the branch
at P [ln] will be taken. Let σn+1 be a configuration for which σn

o=⇒ σn+1.
From the semantics of AMiL, it follows that σn+1 =L σn. Hence, we
conclude that σn+1 =L σ′

n+1, and furthermore, both configurations have
pc = l′.
On the other hand, if AC was not incremented, the branch at P [ln] will
not be taken. Hence, the behavior of the instructions at P [ln] and P ′[ln]
is identical according to AMiL semantics. Hence, we can find two live-
equivalent configurations σn+1 and σ′

n+1 with pc = ln+1.
– (add ghost edge) There is no instruction at P [ln], but there is an instruc-

tion at P ′[ln]. This can only be the case if P ′[ln] = jmp l′ such that
ln → l′ is a ghost edge. Since ln → l′ is a ghost edge, mimicry mode must
be enabled in σ′

n, but the induction hypothesis states that mimicry mode
is disabled. Hence, this case cannot occur during the induction.

To finish proof, we show that there is some n during the induction for which
σn.pc = σ′

n.pc = l1. This follows from the fact that the induction reaches each
configuration that can be reached through single evaluation steps ⇓o, and since each
program is assumed have a single exit l1, we know that there is some σn reached
by the induction for which σn.pc = l1. The correctness of T then follows from def.
8.
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A.2 Well-behavedness of Activating Region
This section adapts the sketch of proof provided in Appendix C of [46] to the revised
well-behavedness proposition stated in section 5.4.1.

Proposition 2 (Well-behaved Activating Region (revised)). For any activating re-
gion [l, l′] and valid configuration σ such that [l, l′]σ ⇓o σ′, if AC is incremented at
location l:

1) it remains set during the execution of [l, l′] (including recursive function calls
but excluding l′), and

2) it is restored to its initial value during the evaluation of the instruction at location
l′.

As stated by Winderix et al., it follows from the evaluation rules of AMi in figures
4.3 and 4.4 that:

Proposition 5. A step from a configuration where AC > 0 decrements AC only if
pc = Ex and increments AC only if pc = En. Additionally, En and Ex are only
modified if AC is set to 0.

Furthermore, for any valid configuration it follows from the evaluation rules that:

Proposition 6. For any valid configuration σ, if σ.AC > 0, then [σ.En, σ.Ex] is an
activating region.

Next, the authors of [46] prove that nested SESE regions behave as intended.
We adopt this lemma, but in contrast to [46] we don’t require that the nested region
[l2, l′2] is SESE. Instead, we require that this region adheres to the well-behavedness
criterion stated in proposition 2. We state this lemma with changes marked in blue.

Lemma 2. During the evaluation of an SESE region [l1, l′1] in a configuration σ
that has mimicry mode activated for [l2, l′2] and where [l2, l′2] is contained in [l1, l′1]
and adheres to the well-behavedness criterion (proposition 2), assuming function
calls in [l1, l′1] preserve the activation configuration and do not deactivate mimicry
mode, we have that if [l1, l′1]σ ⇓o σ′, then σ.〈AC, En, Ex〉 = σ′.〈AC, En, Ex〉 and
mimicry mode is not deactivated during the evaluation of [l1, l′1] .

With contained in a SESE region we mean that each location in [l2, l′2] (all
locations reachable from l2 and post-dominated by l′2) is contained within that SESE
region. As defined by [46], a location l is contained within a SESE region [l1, l′1] if
l1 dominates l and l′1 post-dominates l.

The proof of above lemma stated by Winderix et al. still holds, since the SESE
requirement of [l2, l′2] is only used at the end of the proof. Here, they require that
any cycle containing l2 also contains l′2, which is also provided by proposition 2.

We adopt the following lemma from [46] which shows that big-step evaluation of
functions preserves activation configurations.
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Lemma 3. For any function f , activating region [l, l′] , and configuration σ that
has mimicry mode enabled for [l, l′] , if [lf , l′f ]σ ⇓o σ′ then σ.〈AC, En, Ex〉 =
σ′.〈AC, En, Ex〉 and mimicry mode is not disabled during the evaluation of f .

The proof provided by Winderix et al. still holds when using lemma 2 instead
of lemma 3 defined by [46].

Finally, we adapt the proof for the well-behavedness proposition, showing mod-
ifications in blue.

Proposition 2 (Well-behaved Activating Region (revised)). For any activating re-
gion [l, l′] and valid configuration σ such that [l, l′]σ ⇓o σ′, if AC is incremented at
location l:

1) it remains set during the execution of [l, l′] (including recursive function calls
but excluding l′), and

2) it is restored to its initial value during the evaluation of the instruction at location
l′.

Proof. (sketch) Consider a valid configuration σ such that [l, l′]σ ⇓o σ′ and mimicry
mode is set after executing the instruction at location l. Let 〈AC′, En′, Ex′〉 be the
corresponding activation configuration where AC′ > 0. We may assume that [l, l′]
adheres to proposition 2; let f be the function that contains [l, l′] . From 3, we know
that evaluation of nested functions during the evaluation of [l, l′] (including recursive
function calls) do not reset AC and restore its value before returning. Therefore, we
can ignore the evaluation of nested functions and, because we assume a sound CFG,
we can reason about the big-step evaluation of [l, l′] as a sequence of small steps
following a path in cfg(f), starting at l and ending as soon as l′ is reached. Assume
that AC is incremented at location l. We need to show that: 1) AC is not reset
during the whole execution of [l, l′] (l′ excluded), 2) it is restored to its previous
value when executing the instructions at location l′. Notice that, if we show that AC
is not reset during the whole execution of [l, l′] , we can also consider than En and
Ex are not modified and remain set to En’ and Ex’ (cf. proposition 5). Since AC is
incremented at location l, we know that En′ = l. Because σ is a valid configuration
(and so is its successor), we know from Proposition 4 that [En′, Ex′, i] s an activating
region and therefore [En′, Ex′] = [l, l′]. In this case, from the evaluation rules of AMi
we know that AC′ = σ.AC + 1. Therefore, it is sufficient to show that:

1. there is no path in the region [l, l′] that goes through l twice, hence AC is not
incremented again,

2. the evaluation of the instruction at location l′ decrements AC to its previous
value, σ.AC.

The first point follows from the fact that [l, l′] adheres to proposition 2 and thus
the program has no cycle containing l which does not also contains l′; hence the
evaluation of [l, l′] cannot go through l twice before ending in l′. The second point
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follows from the fact that during the final step, (i.e., the evaluation of the instruction
at location l), because Ex′ = l′, AC is decremented and therefore restored to its
previous value.

A.3 Well-behavedness of Activating Regions after
Linearization

In this section we prove that the application of algorithm 1 results only in well-
behaved activating regions.

Proposition 3 (Linearization Results in Well-behaved Activating Regions). Algo-
rithm 1 (method 3) results in well-behaved activating regions.

On the one hand, l′ must post-dominate l. We show that this holds in lemma 4.

Lemma 4. For each activating region [l, l′] (or activating edge (l, l′) ∈ A) in the
linearized program, l′ post-dominates l.

Proof. Since there is an edge l→ l′ and blocks are visited in topological ordering, l
will be visited before l′. When visiting the secret-dependent branch at l in algorithm
1, deferral edges are added from the single successor “next” to each other successor,
including l′. At a later iteration of the algorithm, this successor “next” of l will be
visited, and there will be a deferral edge to l′ (l′ ∈ T ). It follows from Lemma B.3
from [32] that l′ post-dominates the single successor of l, and hence l′ post-dominates
l.

On the other hand, each cycle in [l, l′] that contains l must also contain through
l′. This is trivially satisfied in any cycle-free control flow graph. Since back edges are
removed before applying algorithm 1, the resulting activating regions will initially
be well-behaved. However, we still need to show that the reinsertion of back edges
does not break the well-behavedness of the activating regions. In reducible control
flow with back edges we require that an exiting block of a loop cannot contain a
secret-dependent branch.

Lemma 5. The following holds when applying algorithm 1 to any reducible CFG
where exiting blocks of loops don’t contain secret-dependent branches. For each ac-
tivating region [l, l′] in the linearized program, each cycle that contains l must also
contain l′, and vice-versa.

Well-behavedness of each activating region [l, l′] in the linearized program follows
from both lemmas. A similar argument can be made for the linearization methods
that require structured control flow.
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V set of values 26, 27
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Instr set of instructions 26

Loc set of locations 26, 27

m memory map 27

pc program counter 27, 28

AC activation counter 24, 27, 28, 47–49, 56, 83, 84

En mimicry entry address 27, 28

Ex mimicry exit address 27, 28, 47

σ symbol used to represent an AMi configuration 27

L live state 48, 49, see live state

=L live-equivalence relation 49, see live-equivalent
=P low-equivalence relation 29, 55, see low-equivalent
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Glossary

activating branch An instruction that conditionally enables mimicry mode until
the target location is reached. 18, 35, 38, 42, 44, 46, 47, 56, 78

activating edge A pair (lx, ly) where lx is the location of an activating instruction
with target ly (see definition 1). 33–36, 38–40, 42–44, 46, 47, 51, 54, 55, 66–68,
70, 85

activating instruction An activating branch or activating jump. 47

activating jump An instruction that unconditionally enables mimicry mode until
the target location is reached. 3, 34, 38, 44, 47, 55

activating region Region spanned between an activating branch and its target
(see definition 1). 18, 24, 25, 33–36, 38, 39, 46–51, 53–57, 66–68, 81, 83–85

AMi configuration A tuple 〈m, r, pc, AC, En, Ex〉 that represents the state of the
processor with AMi extension. 27, 48

AMi linearization A type of linearization that only replaces control-flow edges
with activating edges, and introduces ghost edges (see definition 3). 35, 36,
40, 54, 55, 81

AMiL Formal abstraction of a typical ISA with the AMi extension. 5, 26–29, 32

architectural configuration A tuple 〈m, r, pc〉 that represents the state of the
processor. 27, 48

architectural mimicry A novel approach that extends hardware to facilitate software-
based hardening against side-channel attacks introduced by Winderix et al [46].
2, 17,

back edge Edge la → lb of a reducible CFG that is not a forward edge, and lb
dominates la. 13, 14, 39, 40, 85

basic block A linear sequence instructions followed by a sequence of terminators.
10, 68, 70

block . 10, 14, 38–40, 42, 44, 48, 51, 66, 68, 70, 75, 85, see basic block
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Glossary

compact topological ordering A topological ordering that is both dominance
and loop compact (see defintion 4). 39, 66, 75

constant-time leakage model A leakage model under which control flow and
data flow is leaked. 29, 67

constant-time programming A programming discipline that forbids secret-dependent
control flow, secret-dependent memory accesses, and secret operands of in-
structions with variable latency. 1, 7, 9

control flow The order in which instructions can be executed. 9

control-flow edge An edge in the CFG, indicating that the target of the edge is
a successor of the source. 10, 11, 13, 24, 34, 35, 40, 42, 47, 54, 55, 66

control-flow graph The collection of basic blocks and the successor relation be-
tween locations. 3, 10,

control-flow linearization A program transformation that mitigates against leak-
age of control flow (program counter). 2, 3, 7, 23, 60, 65

correct region A region is correct if the live state remains unaffected when exe-
cuting the region in mimicry mode (see defintion 7). 49, 51, 53, 54, 57, 81

correct transformation A program is correct if it has the same effect on the live
state of a program (see definition 8). 40, 48, 55

deferral edge A temporary edge la → lb used by the PCFL algorithm to ensure lb
post-dominates la in the linearized program. 40, 43, 85

dominance A location l dominates l′ if each path from the unique CFG entry to
l′ contains l. 11, 14, 47

entering Location or block that is succeeded by an entry or header. 12, 13

entry Given a region [l, l′], l is the entry. 12, 14, 34, 47

exit Given a region [l, l′], l′ is the exit. 12, 14, 34, 38, 39, 47, 54, 66

exiting Location or block that is succeeded by the exit. 12, 14, 39, 48, 55, 56, 66,
85

fallthrough The single successor of a basic block with no terminators. 10, 70

forward edge Edges of a reducible CFG that form an acyclic graph. 13

ghost edge A control-flow edge that is only taken in mimicry mode (see definition
2). 33–36, 38–40, 42–44, 47, 53, 55, 66
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Glossary

ghost instruction An instruction that is only executed in mimicry mode, and
mimicked in standard execution mode. 19, 49, 50, 67, 68

hardening Transforming a program in order to mitigate against side channel leak-
age. 5, 7, 50, 61, 73, 75

header A header of a loop dominates all locations within the loop. 13, 14

immediate post-dominator The first block or location encounter on each path
starting from a location to the exit of the CFG. 11–13, 66, 70

instruction set architecture The set of machine language instructions that a
processor can execute, which serves as an interface between the hardware and
software. 2, 8,

intermediate representation Code used internally by a compiler to represent
machine code at an abstract level. 8,

latch A location or block with an outgoing back edge to the header. 14, 56

leakage model A model that defines the ability of an attacker to observe (mi-
cro)architectural state. 5, 26

linearization . 4, 5, 7, 20, 22, 23, 36, 40, 44, 46, 48, 50, 51, 54, 55, 61, 63–67, 70,
72, 73, 75, 85, see control-flow linearization

linearization . see control-flow linearization

live A variable is live if it holds a value that may be needed in the future, see section
2.4.3. 15, 48, 49, 54

live state The live state of an architectural configuration is the set of live registers
and memory locations (see definition 5). 48–51, 53–55

live-equivalent Two architectural configurations are live-equivalent if they agree
on their live state (see definition 6). 54

LLVM A compiler framework designed to support lifelong program analysis and
transformation. 2–5, 8, 9, 60, 61, 63, 64, 68, 72, 73, 76, 77, 79

loop A single-entry cycle in a CFG. 13, 14, 40, 48, 56, 85

low-equivalent Two configurations are low-equivalent under a policy if they agree
on the public part of their register file and memory map. 29, 55

mimicry mode An execution mode in AMi in which standard instructions are
mimicked. 2, 3, 18, 19, 28, 29, 33–35, 38, 40, 42, 44, 47–49, 51, 54, 55, 57
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partial control-flow linearization A control-flow linearization technique. 3, 23,
39,

path Sequence of successive locations. 9, 12, 47

persistent instruction An instruction that is executed normally regardless of the
execution mode. 18, 49–51, 53, 54, 67, 68

policy . see security policy

post-dominance A location l post-dominates l′ if each path from l′ to the unique
CFG exit contains l. 11, 12, 34, 40, 47, 85

predecessor Relation that describes which locations or blocks can be executed
right before a certain location or block in control flow. 9, 12, 70

qualifier A prefix for an instruction in the AMi ISA that defines the behavior of
instructions in standard execution mode and mimicry mode. 18, 61, 70

reducible A CFG is reducible if the edges can be partitioned into forward edges
and back edges. 3, 4, 13, 14, 20, 23, 38, 39, 48, 55, 72–74, 76, 85

region A region [l, l′] is the set of locations present on any path from l to l′. 11,
12, 33, 36, 38, 39, 47–49, 51, 53–55, 66, 68, 71

RISC-V An open standard ISA based on reduced instruction set computer (RISC)
principles. 2–5, 8, 17, 60, 61, 70, 72, 73, 77

secure region A region is secure if it does not leak secrets on side channels (see
defintion 9). 55

security policy A partitioning of memory locations into public and secret values.
29

SESE region A region [l, l′] where l dominates l′, l′ post-dominates l, and every
cycle containing l contains l′ and vice-versa. 11–13, 24, 36, 38, 66

side channel A channel not designed for communication between the sender and
receiver where the sender does not intend to leak information, which can be
exploited by an attacker at the receiving end. 1–3, 5–7, 9, 33, 42, 61

standard execution mode An execution mode in AMi in which standard instruc-
tions are executed normally. 18, 19, 49, 57

static single assignment A property of the intermediate representation of some
compilers that requires each variable to be assigned exactly once and defined
before it is used. 15,

structured A CFG is structured if each branch is a structured branch. 3, 11–13,
20–22, 36, 48, 55, 65, 66, 72, 74, 75, 85
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structured branch A branch is structured if for each path from a successor to its
immediate post-dominator, the region between the first and last location of
the path is SESE. 12

structurization A correct transformation that transforms a program into struc-
tured program. 4, 20–22, 36, 65, 72–74

successor Relation that describes which locations or blocks can follow a certain
location or block in control flow. 9, 10, 12–14, 25, 40, 42, 44, 46, 47, 70, 85

taint analysis A security technique that tracks how tainted data flows through a
program. 8, 56, 60, 66

terminator Branch or jump instruction at the end of a basic block. 10, 46

topological ordering An ordering of a DAG which only visits a node after all its
predecessors have been visited. 39, 85

triangle-structured Subset of structured control flow where branches are suc-
ceeded by a single SESE region. 3, 11–13, 20, 21, 24, 36, 46, 55, 65, 66, 72,
73

well-behaved A property of an activating region that ensures nested activations
behave as expected, see propositions 1, 2 and 2. 24, 25, 36, 38, 39, 46–49, 54,
55, 57, 81, 85
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